146
Views
31
CrossRef citations to date
0
Altmetric
Review

Myocardial repair: from salvage to tissue reconstruction

, , &
Pages 669-686 | Published online: 10 Jan 2014

References

  • Rosamond W, Flegal K, Furie K et al. Heart disease and stroke statistics 2008 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation117(4), e25–e146 (2007).
  • Jessup M, Brozena S. Heart failure. N. Engl. J. Med.348, 2007–2018 (2003).
  • Udelson JE, Patten RD, Konstam MA. New concepts in post-infarction ventricular remodeling. Rev. Cardiovasc. Med.4(Suppl. 3), S3–S12 (2003).
  • Boersma E, Mercado N, Poldermans D et al. Acute myocardial infarction. Lancet361(9360), 847–858 (2003).
  • Abbate A, Bussani R, Amin MS, Vetrovec GW, Baldi A. Acute myocardial infarction and heart failure: role of apoptosis. Int. J. Biochem. Cell. Biol.38(11), 1834–1840 (2006).
  • Garg S, Narula J, Chandrashekhar Y. Apoptosis and heart failure: clinical relevance and therapeutic target. J. Mol. Cell. Cardiol.38(1), 73–79 (2005).
  • Wencker D, Chandra M, Nguyen K et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest.111(10), 1497–1504 (2003).
  • Mani K, Kitsis RN. Myocyte apoptosis: programming ventricular remodeling. J. Am. Coll. Cardiol.41(5), 761–764 (2003).
  • O’Neill BT, Abel ED. Akt1 in the cardiovascular system: friend or foe? J. Clin. Invest.115(8), 2059–2064 (2005).
  • Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc. Res.53(1), 31–47 (2002).
  • Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid. Redox Signal.8(11–12), 1907–1939 (2006).
  • Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res.94(12), 1543–1553 (2004).
  • Zeisberg EM, Tarnavski O, Zeisberg M et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med.13(8), 952–961 (2007).
  • Bujak M, Ren G, Kweon HJ et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation116(19), 2127–2138 (2007).
  • Leask A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res.74(2), 207–212 (2007).
  • Vanhoutte D, Schellings M, Pinto Y, Heymans S. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc. Res.69(3), 604–613 (2006).
  • Tomanek RJ, Zheng W, Yue X. Growth factor activation in myocardial vascularization: therapeutic implications. Mol. Cell. Biochem.264(1–2), 3–11 (2004).
  • Szmitko PE, Fedak PW, Weisel RD et al. Endothelial progenitor cells: new hope for a broken heart. Circulation107(24), 3093–3100 (2003).
  • Renault MA, Losordo DW. Therapeutic myocardial angiogenesis. Microvasc. Res.74(2–3), 159–171 (2007).
  • Garry DJ, Olson EN. A common progenitor at the heart of development. Cell127(6), 1101–1104 (2006).
  • Germani A, Di Rocco G, Limana F, Martelli F, Capogrossi MC. Molecular mechanisms of cardiomyocyte regeneration and therapeutic outlook. Trends Mol. Med.13(3), 125–133 (2007).
  • Leri A, Kajstura J, Anversa P, Frishman WH. Myocardial regeneration and stem cell repair. Curr. Probl. Cardiol.33(3), 91–153 (2008).
  • Ellison GM, Torella D, Karakikes I, Nadal-Ginard B. Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1), S52–S59 (2007).
  • Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell132(4), 537–543 (2008).
  • Hsieh PC, Segers VF, Davis ME et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med.13(8), 970–974 (2007).
  • Bicknell KA, Coxon CH, Brooks G. Can the cardiomyocyte cell cycle be reprogrammed? J. Mol. Cell. Cardiol.42(4), 706–721 (2007).
  • Regula KM, Rzeszutek MJ, Baetz D, Seneviratne C, Kirshenbaum LA. Therapeutic opportunities for cell cycle re-entry and cardiac regeneration. Cardiovasc. Res.64(3), 395–401 (2004).
  • Costa AD. Divide to survive: myocardial regeneration and functional recovery after cell cycle activation in injured hearts. Cardiovasc. Res.78(1), 1–2 (2008).
  • Sussman M. “AKT”ing lessons for stem cells: regulation of cardiac myocyte and progenitor cell proliferation. Trends Cardiovasc. Med.17(7), 235–240 (2007).
  • Collins SD, Baffour R, Waksman R. Cell therapy in myocardial infarction. Cardiovasc. Revasc. Med.8(1), 43–51 (2007).
  • Dimmeler S, Burchfield J, Zeiher AM. Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol.28(2), 208–216 (2008).
  • Laflamme MA, Zbinden S, Epstein SE, Murry CE. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu. Rev. Pathol.2, 307–339 (2007).
  • Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature451(7181), 937–942 (2008).
  • Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103(5), 697–705 (1999).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Balsam LB, Wagers AJ, Christensen JL et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983), 668–673 (2004).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983), 664–668 (2004).
  • Rota M, Kajstura J, Hosoda T et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc. Natl Acad. Sci. USA104(45), 17783–17788 (2007).
  • Anversa P, Leri A, Rota M et al. Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells25(3), 589–601 (2007).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp. Biol. Med. (Maywood)231(1), 39–49 (2006).
  • Dai W, Hale SL, Kloner RA. Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regen. Med.2(1), 63–68 (2007).
  • Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J.20(6), 661–669 (2006).
  • Noiseux N, Gnecchi M, Lopez-Ilasaca M et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14(6), 840–850 (2006).
  • Miyahara Y, Nagaya N, Kataoka M et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12(4), 459–465 (2006).
  • Shintani S, Murohara T, Ikeda H et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation103(23), 2776–2779 (2001).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation106(24), 3009–3017 (2002).
  • Ii M, Nishimura H, Iwakura A et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation111(9), 1114–1120 (2005).
  • Sohn RL, Jain M, Liao R. Adult stem cells and heart regeneration. Expert Rev. Cardiovasc. Ther.5(3), 507–517 (2007).
  • Britten MB, Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108(18), 2212–2218 (2003).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J. Am. Coll. Cardiol.44(8), 1690–1699 (2004).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol.50(18), 1761–1767 (2007).
  • Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res.87(5), 378–384 (2000).
  • Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation107(8), 1164–1169 (2003).
  • Dewald O, Zymek P, Winkelmann K et al. CCL2/Monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res.96(8), 881–889 (2005).
  • Minatoguchi S, Takemura G, Chen XH et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation109(21), 2572–2580 (2004).
  • van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol.170(3), 818–829 (2007).
  • Nahrendorf M, Swirski FK, Aikawa E et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med.204(12), 3037–3047 (2007).
  • Leor J, Rozen L, Zuloff-Shani A et al.Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation114(1 Suppl.), I94–I100 (2006).
  • Steendijk P, Smits PC, Valgimigli M et al. Intramyocardial injection of skeletal myoblasts: long-term follow-up with pressure-volume loops. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S94–S100 (2006).
  • Tambara K, Sakakibara Y, Sakaguchi G et al. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation108(Suppl. 1), II259–II263 (2003).
  • Pagani FD, DerSimonian H, Zawadzka A et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol.41(5), 879–888 (2003).
  • Hagege AA, Carrion C, Menasche P et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet361(9356), 491–492 (2003).
  • Menasche P, Alfieri O, Janssens S et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial. First randomized placebo-controlled study of myoblast transplantation. Circulation117(9), 1189–1200(2008).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95(9), 911–921 (2004).
  • Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA102(25), 8966–8971 (2005).
  • Urbanek K, Rota M, Cascapera S et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ. Res.97(7), 663–673 (2005).
  • Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl Acad. Sci. USA102(24), 8692–8697 (2005).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100(21), 12313–12318 (2003).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • Laugwitz KL, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature433(7026), 647–653 (2005).
  • Caspi O, Huber I, Kehat I et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol.50(19), 1884–1893 (2007).
  • Leor J, Gerecht S, Cohen S et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart93(10), 1278–1284 (2007).
  • Laflamme MA, Chen KY, Naumova AV et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25(9), 1015–1024 (2007).
  • Maulik N, Thirunavukkarasu M. Growth factor/s and cell therapy in myocardial regeneration. J. Mol. Cell. Cardiol.44(2), 219–227 (2007).
  • Vandervelde S, Van Luyn MJA, Tio RA, Harmsen MC. Signaling factors in stem cell-mediated repair of infarcted myocardium. J. Mol. Cell. Cardiol.39, 363–376 (2005).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation109(21), 2487–2491 (2004).
  • Zohlnhofer D, Dibra A, Koppara T et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J. Am. Coll. Cardiol.51(15), 1429–1437 (2008).
  • Isner JM. Myocardial gene therapy. Nature415(6868), 234–239 (2002).
  • Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE. Gene therapy: targeting the myocardium. Heart94(1), 89–99 (2008).
  • Gaffney MM, Hynes SO, Barry F, O’Brien T. Cardiovascular gene therapy: current status and therapeutic potential. Br. J. Pharmacol.152(2), 175–188 (2007).
  • Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol. Ther.15(7), 1233–1247 (2007).
  • Muller OJ, Katus HA, Bekeredjian R. Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc. Res.73(3), 453–462 (2007).
  • Kondo I, Ohmori K, Oshita A et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol.44(3), 644–653 (2004).
  • Crottogini A, Meckert PC, Vera Janavel G et al. Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum. Gene Ther.14(14), 1307–1318 (2003).
  • Ruixing Y, Dezhai Y, Hai W et al. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur. J. Heart Fail.9(4), 343–351 (2007).
  • Hao X, Mansson-Broberg A, Grinnemo KH et al. Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model. Cardiovasc. Res.73(3), 481–487 (2007).
  • Vera Janavel G, Crottogini A, Cabeza Meckert P et al. Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther.13(15), 1133–1142 (2006).
  • Ripa RS, Wang Y, Jorgensen E et al. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur. Heart J.27(15), 1785–1792 (2006).
  • Kastrup J, Jorgensen E, Ruck A et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol.45(7), 982–988 (2005).
  • Williams ML, Koch WJ. Viral-based myocardial gene therapy approaches to alter cardiac function. Annu. Rev. Physiol.66, 49–75 (2004).
  • Belke DD, Gloss B, Hollander JM et al.In vivo gene delivery of HSP70i by adenovirus and adeno-associated virus preserves contractile function in mouse heart following ischemia–reperfusion. Am. J. Physiol. Heart Circ. Physiol.291(6), H2905–H2910 (2006).
  • Most P, Remppis A, Pleger ST, Katus HA, Koch WJ. S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am. J. Physiol. Regul. Integr. Comp. Physiol.293(2), R568–R577 (2007).
  • Pleger ST, Boucher M, Most P, Koch WJ. Targeting myocardial β-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J. Card. Fail.13(5), 401–414 (2007).
  • Pleger ST, Remppis A, Heidt B et al. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol. Ther.12(6), 1120–1129 (2005).
  • Most P, Pleger ST, Volkers M et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J. Clin. Invest.114(11), 1550–1563 (2004).
  • Kaye DM, Preovolos A, Marshall T et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J. Am. Coll. Cardiol.50(3), 253–260 (2007).
  • Stewart DJ, Hilton JD, Arnold JM et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a Phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther.13(21), 1503–1511 (2006).
  • Palomeque J, Chemaly ER, Colosi P et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther.14(13), 989–997 (2007).
  • Su H, Joho S, Huang Y et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc. Natl Acad. Sci. USA101(46), 16280–16285 (2004).
  • Agrawal RS, Muangman S, Layne MD et al. Pre-emptive gene therapy using recombinant adeno-associated virus delivery of extracellular superoxide dismutase protects heart against ischemic reperfusion injury, improves ventricular function and prolongs survival. Gene Ther.11(12), 962–969 (2004).
  • Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ.15(4), 686–690(2008).
  • Pachori AS, Melo LG, Zhang L, Solomon SD, Dzau VJ. Chronic recurrent myocardial ischemic injury is significantly attenuated by pre-emptive adeno-associated virus heme oxygenase-1 gene delivery. J. Am. Coll. Cardiol.47(3), 635–643 (2006).
  • Liu X, Simpson JA, Brunt KR et al. Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 yr after acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.293(1), H48–H59 (2007).
  • Pleger ST, Most P, Boucher M et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation115(19), 2506–2515 (2007).
  • Staudacher DL, Flugelman MY. Cell and gene therapies in cardiovascular disease with special focus on the no option patient. Curr. Gene Ther.6(6), 609–623 (2006).
  • Dzau VJ, Gnecchi M, Pachori AS. Enhancing stem cell therapy through genetic modification. J. Am. Coll. Cardiol.46(7), 1351–1353 (2005).
  • Melo LG, Pachori AS, Kong D et al. Gene and cell-based therapies for heart disease. FASEB J.18(6), 648–663 (2004).
  • Haider HK, Elmadbouh I, Jean-Baptiste M, Ashraf M. Nonviral vector gene modification of stem cells for myocardial repair. Mol. Med.14(1–2), 79–86 (2008).
  • Matsumoto R, Omura T, Yoshiyama M et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol.25(6), 1168–1173 (2005).
  • Yang J, Zhou W, Zheng W et al. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology107(1), 17–29 (2007).
  • Li W, Ma N, Ong LL et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25(8), 2118–2127 (2007).
  • Tang YL, Tang Y, Zhang YC et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46(7), 1339–1350 (2005).
  • Mangi AA, Noiseux N, Kong D et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9(9), 1195–1201 (2003).
  • Mirotsou M, Zhang Z, Deb A et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA104(5), 1643–1648 (2007).
  • DeBusk LM, Hallahan DE, Lin PC. Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp. Cell Res.298(1), 167–177 (2004).
  • Jiang S, Haider HK, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ. Res.99(7), 776–784 (2006).
  • Shujia J, Haider HK, Idris NM, Lu G, Ashraf M. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc. Res.77(3), 525–533 (2008).
  • Cheng Z, Ou L, Zhou X et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther.16(3), 571–579 (2008).
  • Zhang D, Fan GC, Zhou X et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol.44(2), 281–292 (2007).
  • Yau TM, Kim C, Li G et al. Maximizing ventricular function with multimodal cell-based gene therapy. Circulation112(9 Suppl.), I-123–I-128 (2005).
  • Spiegelstein D, Kim C, Zhang Y et al. Combined transmyocardial revascularization and cell-based angiogenic gene therapy increases transplanted cell survival. Am. J. Physiol. Heart Circ. Physiol.293(6), H3311–H3316 (2007).
  • Payne TR, Oshima H, Okada M et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol.50(17), 1677–1684 (2007).
  • Roell W, Lewalter T, Sasse P et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature450(7171), 819–824 (2007).
  • Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007 – an update. J. Gene Med.9(10), 833–842 (2007).
  • Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol.48(5), 907–913 (2006).
  • Radisic M, Park H, Gerecht S et al. Biomimetic approach to cardiac tissue engineering. Philos. Trans. R Soc. Lond. B Biol. Sci.362(1484), 1357–1368 (2007).
  • Leor J, Landa N, Cohen S. Renovation of the injured heart with myocardial tissue engineering. Expert Rev. Cardiovasc. Ther.4(2), 1–14 (2006).
  • Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ. Res.97(1), 8–15 (2005).
  • Zimmermann WH, Didie M, Doker S et al. Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc. Res.71(3), 419–429 (2006).
  • Giraud MN, Armbruster C, Carrel T, Tevaearai HT. Current state of the art in myocardial tissue engineering. Tissue Eng.13(8), 1825–1836 (2007).
  • Eschenhagen T, Fink C, Remmers U et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J.11(8), 683–694 (1997).
  • Zimmermann WH, Schneiderbanger K, Schubert P et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res.90(2), 223–230 (2002).
  • Zimmermann WH, Melnychenko I, Wasmeier G et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med.12(4), 452–458 (2006).
  • Kofidis T, Lenz A, Boublik J et al. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials24(27), 5009–5014 (2003).
  • Leor J, Aboulafia-Etzion S, Dar A et al. Bioengineered cardiac grafts. A new approach to repair the infarcted myocardium? Circulation102(Suppl. II), 56–61 (2000).
  • Shachar M, Cohen S. Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail. Rev.8(3), 271–276 (2003).
  • Radisic M, Park H, Shing H et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA101(52), 18129–18134 (2004).
  • Shimizu T, Yamato M, Isoi Y et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res.90(3), e40 (2002).
  • Furuta A, Miyoshi S, Itabashi Y et al. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res.98(5), 705–712 (2006).
  • McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A66(3), 586–595 (2003).
  • Carrier RL, Rupnick M, Langer R et al. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng.8(2), 175–188 (2002).
  • Radisic M, Yang L, Boublik J et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol.286(2), H507–H516 (2004).
  • Dvir T, Benishti N, Shachar M, Cohen S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng.12, 2843–2852 (2006).
  • Dvir T, Levy O, Shachar M, Granot Y, Cohen S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng.13(9), 2185–2193 (2007).
  • Caspi O, Lesman A, Basevitch Y et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res.100(2), 263–272 (2007).
  • Shepherd BR, Hoying JB, Williams SK. Microvascular transplantation after acute myocardial infarction. Tissue Eng.13(12), 2871–2879 (2007).
  • Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng.10(3–4), 403–409 (2004).
  • Christman KL, Vardanian AJ, Fang Q et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol.44(3), 654–660 (2004).
  • Kofidis T, de Bruin JL, Hoyt G et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J. Thorac. Cardiovasc. Surg.128(4), 571–578 (2004).
  • Kofidis T, Lebl DR, Martinez EC et al. Novel Injectable Bioartificial Tissue Facilitates Targeted, Less Invasive, Large-Scale Tissue Restoration on the Beating Heart After Myocardial Injury. Circulation112(9 Suppl.), I-173–I-177 (2005).
  • Kofidis T, de Bruin JL, Hoyt G et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J. Heart Lung Transplant.24(6), 737–744 (2005).
  • Cho SW, Kim IK, Bhang SH et al. Combined therapy with human cord blood cell transplantation and basic fibroblast growth factor delivery for treatment of myocardial infarction. Eur. J. Heart Fail.9(10), 974–985 (2007).
  • Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol.46(4), 714–719 (2005).
  • Davis ME, Motion JP, Narmoneva DA et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation111(4), 442–450 (2005).
  • Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng.11(11–12), 1860–1866 (2005).
  • Landa N, Miller L, Feinberg MS et al. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarct in rat. Circulation117, 1388–1396 (2008).
  • Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation114(24), 2627–2635 (2006).
  • Gaudette GR, Cohen IS. Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation114(24), 2575–2577 (2006).
  • Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol.12(6), 295–310 (2003).
  • Segers VF, Lee RT. Local delivery of proteins and the use of self-assembling peptides. Drug Discov. Today12(13–14), 561–568 (2007).
  • Hsieh PCH, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest.116, 237–248 (2006).
  • Hsieh PCH, MacGillivray C, Gannon J, Cruz FU, Lee RT. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation,114, 637–644 (2006).
  • Segers VF, Tokunou T, Higgins LJ et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation116(15), 1683–1692 (2007).
  • Zhang G, Nakamura Y, Wang X et al. Controlled release of stromal cell-derived factor-1 α in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng.13(8), 2063–2071 (2007).
  • Hao X, Silva EA, Mansson-Broberg A et al. Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res.75(1), 178–185 (2007).
  • Iwakura A, Fujita M, Kataoka K et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels18(2), 93–99 (2003).
  • Liu Y, Sun L, Huan Y, Zhao H, Deng J. Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magnetic resonance tagging. Eur. J. Cardiothorac. Surg.30(1), 103–107 (2006).
  • Shao ZQ, Takaji K, Katayama Y et al. Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ. J.70(4), 471–477 (2006).
  • Fujita M, Ishihara M, Morimoto Y et al. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growthfactor-2 in a rabbit model of chronic myocardial infarction. J. Surg. Res.126, 27–33 (2005).
  • Davis ME, Hsieh PC, Takahashi T et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA103(21), 8155–8160 (2006).
  • Tambara K, Premaratne GU, Sakaguchi G et al. Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation112(9 Suppl.), I129–I134 (2005).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • van der Meer P, Lipsic E, Henning RH et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J. Am. Coll. Cardiol.46(1), 125–133 (2005).
  • Parsa CJ, Matsumoto A, Kim J et al. A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest.112(7), 999–1007 (2003).
  • Torella D, Rota M, Nurzinska D et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res.94, 514–524 (2004).
  • Conti E, Carrozza C, Capoluongo E et al. Insulin-like growth factor-1 as a vascular protective factor. Circulation110, 2260–2265 (2004).
  • Liao S, Porter D, Scott A et al. The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J. Mol. Cell. Cardiol.42(1), 106–120 (2007).
  • Bougioukas I, Didilis V, Ypsilantis P et al. Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovasc. Pathol.16(2), 63–68 (2007).
  • Harada M, Qin Y, Takano H et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak–Stat pathway in cardiomyocytes. Nat. Med.11(3), 305–311 (2005).
  • Takano H, Ueda K, Hasegawa H, Komuro I. G-CSF therapy for acute myocardial infarction. Trends Pharmacol. Sci.28(10), 512–517 (2007).
  • Jayasankar V, Woo YJ, Bish LT et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation108(Suppl. 1), II230–II236 (2003).
  • Dorn GW 2nd. Periostin and myocardial repair, regeneration, and recovery. N. Engl. J. Med.357(15), 1552–1554 (2007).
  • Kuhn B, del Monte F, Hajjar RJ et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med.13(8), 962–969 (2007).
  • Hiasa K, Ishibashi M, Ohtani K et al. Gene transfer of stromal cell-derived factor-1α enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation109(20), 2454–2461 (2004).
  • Hu X, Dai S, Wu WJ et al. Stromal cell derived factor-1 α confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 α CXCR4 axis. Circulation116(6), 654–663 (2007).
  • Bock-Marquette I, Saxena A, White MD, Michael DiMaio J, Srivastava D. Thymosin [β]4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature432(7016), 466–472 (2004).
  • Smart N, Risebro CA, Melville AAet al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature445(7124), 177–182 (2007).
  • Ferrarini M, Arsic N, Recchia FA et al. Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ. Res.98(7), 954–961 (2006).
  • Poh K-K. Gene and cell therapy for chronic ischaemic heart disease. Expert Opin. Biol. Ther.7(1), 5–15 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.