55
Views
6
CrossRef citations to date
0
Altmetric
Review

G-CSF- and erythropoietin-based cell therapy: a promising strategy for angiomyogenesis in myocardial infarction

&
Pages 703-713 | Published online: 10 Jan 2014

References

  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infracted myocardium. Nature410, 701–705 (2001).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7, 430–436 (2001).
  • Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc. Natl Acad. Sci. USA98, 10344–10349 (2001).
  • Hill JM, Syed MA, Arai AE et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J. Am. Coll. Cardiol.46(9), 1643–1648 (2005).
  • Kawada H, Fujita J, Kinjo K et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood104, 3581–1587 (2004).
  • Ripa RS, Haack-Sørensen M, Wang Y et al. Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation116, I-24–I-30 (2007).
  • Sato T, Suzuki H, Kusuyama T et al. G-CSF after myocardial infarction accelerates angiogenesis and reduces fibrosis in swine. Int. J. Cardiol. DOI: 17692407 (2007) (Epub ahead of print).
  • Ohtsuka M, Takano H, Zou Y et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J.18, 851–853 (2004).
  • Balsam LB, Wagers AJ, Christensen JL et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428, 668–673 (2004).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428, 664–668 (2004).
  • Powell TM, Paul JD, Hill JM et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol.25(2), 296–301 (2005).
  • Honold J, Lehmann R, Heeschen C et al. Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler. Thromb. Vasc. Biol.26(10), 2238–2243 (2006).
  • Britten MB, Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108, 2212–2218 (2003).
  • Heeschen C, Lehmann R, Honold J et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation109, 1615–1622 (2004).
  • Assmus B, Urbich C, Aicher A et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res.92, 1049–1055 (2003).
  • Spyridopoulos I, Haendeler J, Urbich C et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation110, 3136–3142 (2004).
  • Dawn B, Guo YR, Rezazadeh A et al. Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ. Res.98, 1098–1105 (2006).
  • Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39, 733–742 (2005).
  • Rehman J, Li J, Orschell CM et al. Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation107, 1164–1169 (2003).
  • Kinnaird T, Stabile E, Burnett MS et al. Bone marrow–derived cells for enhancing collateral development mechanisms, animal data, and initial clinical experiences. Circ. Res.95, 354–363 (2004).
  • Deindl E, Zaruba MM, Brunner S et al. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J.20(7), 956–958 (2006).
  • Kuhlmann MT, Kirchhof P, Klocke R et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J. Exp. Med.203(1), 879–887 (2006).
  • Buschmann IR, Hoefer IE, van Royen N et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis159, 343–356 (2001).
  • Seiler C, Pohl T, Wustmann K et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation23, 2012–2017 (2001).
  • Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94, 230–238 (2004).
  • Hattori K, Dias S, Heissig B et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med.193, 1005–1014 (2001).
  • Silvestre JS, Mallat Z, Tedgui A et al. Post-ischaemic neovascularization and inflammation. Cardiovas. Res.78(2), 242–249 (2008).
  • Harada M, Qin Y, Takano H et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med.11, 305–311 (2005).
  • Takano H, Ueda K, Hasegawa H et al. G-CSF therapy for acute myocardial infarction. Trends Pharmacol. Sci.28(10), 512–517 (2007).
  • Ueda K, Takano H, Hasegawa H et al. Granulocyte colony stimulating factor directly inhibits myocardial ischemia–reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler. Thromb. Vasc. Biol.26, e108–e113 (2006).
  • Sugano Y, Anzai T, Yoshikawa T et al. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc. Res.65, 446–456 (2005).
  • Minatoguchi S, Takemura G, Chen XH et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation109, 2572–2580 (2004).
  • Misao Y, Takemura G, Arai M et al. Importance of recruitment of bone mrrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardio. Res.71, 455–465 (2006).
  • Kang HJ, Kim HS, Koo BK et al. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am. Heart J.153(2), 237e1–e8 (2007).
  • Suzuki K, Nagashima K, Arai M et al. Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease. Circ. J.70, 430–437 (2006).
  • Takano H, Hasegawa H, Kuwabara Y et al. Feasibility and safety of granulocyte colony-stimulating factor treatment in patients with acute myocardial infarction. Int. J. Cardiol.122(1), 41–47 (2007).
  • Valgimigli M, Rigolin GM, Cittaniti P et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur. Heart J.26, 1838–1845 (2005).
  • Ellis SG, Penn MS, Bolwell B et al. Granulocyte colony stimulating factor in patients with large acute myocardial infarction: Results of a pilot dose-escalation randomized trial. Am. Heart J.152, e91–e94 (2006).
  • Ince H, Petzsch M, Kleine HD et al. Preservation from left ventricular remodeling by Front-Integrated Revascularization And Stem Cell Liberation In Evolving Acute Myocardial Infarction By Use Of Granulocyte Colony-stimulating Factor (FIRSTLINE-AMI). Circulation112(20), 3097–3106 (2005).
  • Ripa RS, Jørgensen E, Wang Y et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation113(16), 1983–1992 (2006).
  • Zohlnhöfer D, Ott I, Mehilli J et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA295(9), 1003–1010 (2006).
  • Engelmann MG, Theiss HD, Hennig-Theiss C et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J. Am. Coll. Cardiol.48(8), 1712–1721 (2006).
  • Leone AM, Galiuto L, Garramone B et al. Usefulness of granulocyte colony-stimulating factor in patients with a large anterior wall acute myocardial infarction to prevent left ventricular remodeling (the rigenera study). Am. J. Cardiol.100(3), 3974–3903 (2007).
  • Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol.50(18), 1761–1767 (2007).
  • Kang HJ, Lee HY, Na SH et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation114(1 Suppl.), I145–I151 (2006).
  • Erbs S, Linke A, Adams V et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ. Res.97, 756–762 (2005).
  • Losordo DW, Schatz RA, White CJ et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a Phase I/IIa double-blind, randomized controlled trial. Circulation115(25), 3165–3172 (2007).
  • Kang WJ, Kang HJ, Kim HS et al. Tissue distribution of F-18 FDG labeled peripheral hematopoietic stem cell after intracoronary administration in patients with myocardial infarction. J. Nucl. Med.47, 1295–1301 (2006).
  • Haghighat A, Weiss D, Whalin MK et al. Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation115(15), 2049–2054 (2007).
  • Kang HJ, Kim YS, Koo BK et al. Effects of stem cell therapy with g-csf on coronary artery after drug-eluting stent implantation in patients with acute myocardial infarction. Heart94(5), 604–609 (2007).
  • Cho HJ, Kim TY, Cho HJ et al. The effect of stem cell mobilization by granulocyte-colony stimulating factor on neointimal hyperplasia and endothelial healing after vascular injury with bare-metal versus paclitaxel-eluting stents. J. Am. Coll. Cardiol.48, 366–374 (2006).
  • Kang HJ, Kim HS, Zhang SY et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet363, 751–756 (2004).
  • Hasegawa H, Takano H, Ohtsuka M et al. G-CSF prevents the progression of atherosclerosis and neointimal formation in rabbits. Biochem. Biophys. Res. Commun.344(1), 370–376 (2006).
  • Anagnostou A, Liu Z, Steiner M et al. Erythropoietin receptor mRNA expression in human endothelial cells. Proc. Natl Acad. Sci. USA91, 3974–3978 (1994).
  • Tramontano AF, Muniyappa R, Black AD et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem. Biophys. Res. Commun.308, 990–994 (2003).
  • Brines M, Grasso G, Fiordaliso F et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl Acad. Sci. USA101, 14907–14912 (2004).
  • Anagnostou A, Lee ES, Kessimian N et al. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc. Natl Acad. Sci. USA87, 5978–5982 (1990).
  • Ribatti D, Presta M, Vacca A et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood93(8), 2627–2636 (1999).
  • Heeschen C, Aicher A, Lehmann R et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood102, 1340–1346 (2003).
  • Coleman T, Westenfelder C, Togel F et al. Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities. Proc. Natl Acad. Sci. USA103(15), 5965–5970 (2006).
  • Bahlmann FH, De Groot K, Spandau JM et al. Erythropoietin regulates endothelial progenitor cells. Blood103, 921–926 (2004).
  • Scholz D, Schaper W. Enhanced arteriogenesis in mice overexpressing erythropoietin. Cell Tissue Res.324(3), 395–401 (2006).
  • Leist M, Ghezzi P, Grasso G et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science305, 239–242 (2004).
  • Maiese K, Li F, Chong Z. New Avenues of Exploration for Erythropoietin. JAMA293, 90–95 (2005).
  • Cai Z, Semenza G. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation109, 2050–2053 (2004).
  • Ratajczak J, Majka M, Kijowski J et al. Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythro poietic factors in normal human early erythroid cells. Br. J. Haematol.115, 195–204 (2001).
  • Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999).
  • Somervaille TC, Linch DC, Khwaja A. Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood98, 1374–1381 (2001).
  • Chong ZZ, Kang JQ, Maiese K et al. Bcl-xL, cytochrome c, and caspase-9 form the critical elements for cerebral vascular protection by erythropoietin. J. Cereb. Blood Flow Metab.23, 320–330 (2003).
  • Rui T, Feng Q, Lei M et al. Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc. Res.65, 719–727 (2005).
  • Wald M, Gutnisky A, Borda E et al. Erythropoietin modified the cardiac action of ouabain in chronically anaemic-uraemic rats. Nephron71, 190–196 (1995).
  • Porat O, Neumann D, Zamir O et al. Erythropoietin stimulates atrial natriuretic peptide secretion from adult rat cardiac atrium. J. Pharmacol. Exp. Ther.276, 116–128 (1996).
  • Lipšic E, Schoemaker R, van der Meer P et al. Protective effects of erythropoietin in cardiac ischemia from bench to bedside. J. Am. Coll. Cardiol.48, 216–217 (2006).
  • Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat. Rev. Neurosci.6, 484–494 (2005).
  • Calvillo L, Latini R, Kajstura J et al. Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc. Natl Acad. Sci. USA100(8), 4802–4806 (2003).
  • Lipsic E, van der Meer P, Henning RH et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J. Cardiovasc. Pharmacol.44, 473–479 (2004).
  • Parsa CJ, Matsumoto A, Kim J et al. A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest.112, 999–1007 (2003).
  • van der Meer P, Lipsic E, Henning RH et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J. Am. Coll. Cardiol.46, 125–133 (2005).
  • Hirata A, Minamino T, Asanuma H et al. Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc. Drugs Ther.19, 33–40 (2005).
  • McMahon LP, Mason K, Skinner SL et al. Effects of haemoglobin normalization on quality of life and cardiovascular parameters in end-stage renal failure. Nephrol. Dial. Transplant15, 142–150 (2000).
  • Silverberg DS, Wexler D, Sheps D et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J. Am. Coll. Cardiol.37(7), 1775–1780 (2001).
  • Mancini DM, Katz SD, Lang CC et al. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation107, 294–299 (2003).
  • Namiuchi S, Kagaya Y, Ohta J et al. High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention. J. Am. Coll. Cardiol.45, 1406–1412 (2005).
  • van der Meer P, Voors AA, Lipsic E et al. Prognostic value of plasma erythropoietin on mortality in patients with chronic heart failure. J. Am. Coll. Cardiol.44, 636–637 (2004).
  • Ferrario M, Massa M, Rosti V et al. Early haemoglobin-independent increase of plasma erythropoietin levels in patients with acute myocardial infarction. Eur. Heart J.1805–1813 (2007).
  • Lipsic E, van der Meer P, Voors AA et al. A single bolus of a long-acting erythropoietin analogue darbepoetin a in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc. Drugs Ther.20, 135–141 (2006).
  • Akimoto T, Kusano E, Inaba T et al. Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int.58, 269–282 (2000).
  • Morakkabati N, Gollnick F, Meyer R et al. Erythropoietin induces Ca2+ mobilization and contraction in rat mesangial and aortic smooth muscle cultures. Exp. Hematol.24, 392–397 (1996).
  • Heidenreich S, Rahn KH, Zidek W et al. Direct vasopressor effect of recombinant human erythropoietin on renal resistance vessels. Kidney Int.39, 259–265 (1991).
  • Carlini R, Obialo CI. Rothstein M. Intravenous erythropoietin administration increases plasma endothelin and blood pressure in hemodialysis patients. Am. J. Hypertens.6, 103–107 (1993).
  • Henry DH, Bowers P, Romano MT et al. Epoetin alfa: clinical evolution of a pleiotropic cytokine. Arch. Intern. Med.164, 262–276 (2004).
  • Tobu M, Iqbal O, Fareed D et al. Erythropoietin-induced thrombosis as a result of increased inflammation and thrombin activatable fibrinolytic inhibitor. Clin. Appl. Thromb. Hemost.10, 225–232 (2004).
  • Stohlawetz PJ, Dzirlo L, Hergovich N et al. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood95(9), 2983–2989 (2000).
  • Bohlius J, Wilson J, Seidenfeld J et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J. Natl Cancer Inst.98, 708–714 (2006).
  • Phrommintikul A, Haas SJ, Elsik M et al. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet369(9559), 381–388 (2007).
  • Bennett CL, Silver SM, Djulbegovic B et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA299(8), 914–924 (2008).
  • Cotter DJ, Stefanik K, Zhang Y et al. Hematocrit was not validated as a surrogate end point for survival among epoetin-treated hemodialysis patients. J. Clin. Epidem.57, 1086–1095 (2004).
  • Tang Y, Rinder H, Katz S et al. Effects of recombinant human erythropoietin on antiplatelet action of aspirin and clopidogrel in healthy subjects: Results of a double-blind, placebo-controlled randomized trial. Am. Heart J.154(494) e14–e7 (2007).
  • Yasuda Y, Fujita Y, Matsuo T et al. Erythropoietin regulates tumour growth of human malignancies. Carcinogenesis24, 1021–1029 (2003).
  • Henke M, Laszig R, Rübe C et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet362(9392), 1255–1260 (2003).
  • Erbayraktar S, Grasso G, Sfacteria A et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl Acad. Sci. USA100, 6741–6746 (2003).
  • Fiordaliso F, Chimenti S, Staszewsky L et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia–reperfusion injury. Proc. Natl Acad. Sci. USA102, 2046–2051 (2005).
  • Moon C, Krawczyk M, Paik D et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J. Pharmacol. Exp. Ther.316, 999–1005 (2006).
  • Zhang D, Zhang F, Zhang Y et al. Combining erythropoietin infusion with intramyocardial delivery of bone marrow cells is more effective for cardiac repair. Transpl. Int.20(2), 174–183 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.