74
Views
12
CrossRef citations to date
0
Altmetric
Review

Dyslipidemia in insulin resistance: clinical challenges and adipocentric therapeutic frontiers

&
Pages 1007-1022 | Published online: 10 Jan 2014

References

  • Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA285(19), 2486–2497 (2001).
  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339, 229–234 (1998).
  • Hu FB, Haffner SM, Solomon CG, Willett WC, Manson JE. Elevated risk of cardiovascular disease prior to clinical diagnosis of Type 2 diabetes. Diabetes Care25(7), 1129–1134 (2002).
  • Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care25(7), 1177–1184 (2002).
  • Bierman EL. George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler. Thromb.12(6), 647–656 (1992).
  • Krauss RM, Siri PW. Dyslipidemia in Type 2 diabetes. Med. Clin. North Am.88(4), 897–909 (2004).
  • Barter PJ, Ballantyne CM, Carmena R et al. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J. Intern. Med.259(3), 247–258 (2006).
  • Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J. Clin. Invest.115(5), 1111–1119 (2005).
  • Weisberg SP, McCann D, Desai M et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest.112(12), 1796–1808 (2003).
  • Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112(12), 1821–1830 (2003).
  • Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Invest.95(1), 158–166 (1995).
  • Kissebah AH, Alfarsi S, Evans DJ, Adams PW. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in non-insulin-dependent diabetes mellitus. Diabetes31, 217–225 (1982).
  • Campbell PJ, Carlson MG, Nurjhan N. Fat metabolism in human obesity. Am. J. Physiol.266(4 Pt 1), E600–E605 (1994).
  • Malmstrom R, Packard CJ, Caslake M et al. Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia40(4), 454–462 (1997).
  • Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J. Biol. Chem.277(20), 17377–17380 (2002).
  • Avramoglu RK, Qiu W, Adeli K. Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion. Front. Biosci.8, d464–d476 (2003).
  • Sniderman AD, Cianflone K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler. Thromb.13(5), 629–636 (1993).
  • Yao Z, McLeod RS. Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins. Biochim. Biophys. Acta1212(2), 152–166 (1994).
  • Yao Z, Tran K, McLeod RS. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res.38(10), 1937–1953 (1997).
  • Gordon DA, Jamil H. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim. Biophys. Acta1486(1), 72–83 (2000).
  • Sparks JD, Sparks CE. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim. Biophys. Acta1215(1–2), 9–32 (1994).
  • Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes52(5), 1073–1080 (2003).
  • Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr. Opin. Lipidol.12(3), 297–304 (2001).
  • Fredenrich A. Role of apolipoprotein CIII in triglyceride-rich lipoprotein metabolism. Diabetes Metab.24(6), 490–495 (1998).
  • Chen M, Breslow JL, Li W, Leff T. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J. Lipid Res.35(11), 1918–1924 (1994).
  • Duvillard L, Pont F, Florentin E et al. Metabolic abnormalities of apolipoprotein B-containing lipoproteins in non-insulin-dependent diabetes: a stable isotope kinetic study. Eur. J. Clin. Invest.30(8), 685–694 (2000).
  • Chan DC, Nguyen MN, Watts GF, Barrett PH. Plasma apolipoprotein C-III transport in centrally obese men: associations with very low-density lipoprotein apolipoprotein b and high-density lipoprotein apolipoprotein A-I metabolism. J. Clin. Endocrinol. Metab.93(2), 557–564 (2008).
  • Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N. Engl. J. Med.320(16), 1060–1068 (1989).
  • Despres JP, Couillard C, Gagnon J et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb. Vasc. Biol.20(8), 1932–1938 (2000).
  • Carr MC, Ayyobi AF, Murdoch SJ, Deeb SS, Brunzell JD. Contribution of hepatic lipase, lipoprotein lipase, and cholesteryl ester transfer protein to LDL and HDL heterogeneity in healthy women. Arterioscler. Thromb. Vasc. Biol.22(4), 667–673 (2002).
  • Rashid S, Uffelman KD, Lewis GF. The mechanism of HDL lowering in hypertriglyceridemic, insulin- resistant states. J. Diabetes Complications16(1), 24–28 (2002).
  • Lewis GF, Murdoch S, Uffelman K et al. Hepatic lipase mRNA, protein, and plasma enzyme activity is increased in the insulin-resistant, fructose-fed Syrian golden hamster and is partially normalized by the insulin sensitizer rosiglitazone. Diabetes53(11), 2893–2900 (2004).
  • Rosenson RS. Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis173(1), 1–12 (2004).
  • Arai T, Yamashita S, Hirano K et al. Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arterioscler. Thromb.14(7), 1129–1136 (1994).
  • Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur. J. Clin. Invest.24(3), 188–194 (1994).
  • Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res.96(12), 1221–1232 (2005).
  • Rashid S, Barrett PH, Uffelman KD et al. Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler. Thromb. Vasc. Biol.22(3), 483–487 (2002).
  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med.3(2), e22 (2006).
  • Jaye M, Lynch KJ, Krawiec J et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet.21, 424–428 (1999).
  • Ishida T, Choi S, Kundu RK et al. Endothelial lipase is a major determinant of HDL level. J. Clin. Invest.111(3), 347–355 (2003).
  • Maugeais C, Tietge UJ, Broedl UC et al. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation108(17), 2121–2126 (2003).
  • Jin W, Millar JS, Broedl U, Glick JM, Rader DJ. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest.111(3), 357–362 (2003).
  • Ma K, Cilingiroglu M, Otvos JD et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc. Natl Acad. Sci. USA100(5), 2748–2753 (2003).
  • deLemos AS, Wolfe ML, Long CJ, Sivapackianathan R, Rader DJ. Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation106(11), 1321–1326 (2002).
  • Standards of medical care in diabetes. Diabetes Care28(Suppl. 1), S4–S36 (2005).
  • Management of dyslipidemia in adults with diabetes. Diabetes Care23(Suppl. 1), S57–S60 (2000).
  • Grundy SM, Cleeman JI, Merz CN et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation110(2), 227–239 (2004).
  • Stern MP, Mitchell BD, Haffner SM, Hazuda HP. Does glycemic control of type II diabetes suffice to control diabetic dyslipidemia? A community perspective. Diabetes Care15(5), 638–644 (1992).
  • Jacobs MJ KT, Pio JR, Malik S, L’Italien GJ, Chen RS, Wong ND. Prevalence and control of dyslipidemia among persons with diabetes in the United States. Diabetes Res. Clin. Pract.70(3), 263–269 (2005).
  • Yusuf S, Hawken S, Ounpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study), case-control study. Lancet364 (9438), 937–952 (2004).
  • Garvey WT, Kwon S, Zheng D et al. Effects of insulin resistance and Type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes52(2), 453–462 (2003).
  • Ginsberg HN, Huang LS. The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J. Cardiovasc. Risk.7(5), 325–331 (2000).
  • Cannon CP. Combination therapy in the management of mixed dyslipidaemia. J. Intern. Med.263(4), 353–365 (2008).
  • Ali YS, Linton MF, Fazio S. Targeting cardiovascular risk in patients with diabetes: management of dyslipidemia. Curr. Opin. Endocrinol. Diabetes Obes.15(2), 142–146 (2008).
  • Glassberg H, Rader DJ. Management of lipids in the prevention of cardiovascular events. Annu. Rev. Med.59, 79–94 (2008).
  • Standards of medical care in diabetes – 2007. Diabetes Care30(Suppl. 1), S4–S41 (2007).
  • Goldberg IJ, Merkel M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci.6: D388–405 (2001).
  • Bamba V, Rader DJ. Obesity and atherogenic dyslipidemia. Gastroenterology132(6), 2181–2190 (2007).
  • Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res.43(12), 1997–2006 (2002).
  • Ruge T, Svensson M, Eriksson JW, Olivecrona G. Tissue-specific regulation of lipoprotein lipase in humans: effects of fasting. Eur. J. Clin. Invest.35(3), 194–200 (2005).
  • Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab.30(4), 294–309 (2004).
  • Millar JS. Acyl CoA: Diacylglycerol acyltransferases (DGATs) as therapeutic targets for cardiovascular disease. In: Lipid And Atherosclerosis. Packard C, Rader D (Eds). Taylor and Fraser Group (2006).
  • Haemmerle G, Zimmermann R, Zechner R. Letting lipids go: hormone-sensitive lipase. Curr. Opin. Lipidol.14(3), 289–297 (2003).
  • Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res.53(6), 482–491 (2006).
  • Tunaru S, Kero J, Schaub A et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med.9(3), 352–355 (2003).
  • Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci.27(7), 384–390 (2006).
  • Taggart AK, Kero J, Gan X et al. (D)-β-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem.280(29), 26649–26652 (2005).
  • Bays HE, Gonzalez-Campoy JM, Bray GA et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev. Cardiovasc. Ther.6(3), 343–368 (2008).
  • Bays H, Rodbard HW, Schorr AB, Gonzalez-Campoy JM. Adiposopathy: treating pathogenic adipose tissue to reduce cardiovascular disease risk. Curr. Treat. Options Cardiovasc. Med.9(4), 259–271 (2007).
  • Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ. Res.96(10), 1042–1052 (2005).
  • Panarotto D, Remillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur. J. Clin. Invest.32(2), 84–92 (2002).
  • Boden G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front. Biosci.3, d169–d175 (1998).
  • Skowronski R, Hollenbeck CB, Varasteh BB, Chen YD, Reaven GM. Regulation of non-esterified fatty acid and glycerol concentration by insulin in normal individuals and patients with Type 2 diabetes. Diabet. Med.8(4), 330–333 (1991).
  • Wise A, Foord SM, Fraser NJ et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem.278(11), 9869–9874 (2003).
  • Karpe F, Frayn KN. The nicotinic acid receptor – a new mechanism for an old drug. Lancet363 (9424), 1892–1894 (2004).
  • Pike NB, Wise A. Identification of a nicotinic acid receptor: is this the molecular target for the oldest lipid-lowering drug? Curr. Opin. Investig. Drugs5(3), 271–275 (2004).
  • Morrow JD, Awad JA, Oates JA, Roberts LJ, 2nd. Identification of skin as a major site of prostaglandin D2 release following oral administration of niacin in humans. J. Invest. Dermatol.98(5), 812–815 (1992).
  • van Herk T, Brussee J, van den Nieuwendijk AM et al. Pyrazole derivatives as partial agonists for the nicotinic acid receptor. J. Med. Chem.46(18), 3945–3951 (2003).
  • Lai E, Wenning LA, Crumley TM et al. Pharmacokinetics, pharmacodynamics, and safety of a prostaglandin D(2) receptor antagonist. Clin. Pharmacol. Ther. (2007).
  • Paolini JF, Mitchel YB, Reyes R et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol.101(5), 625–630 (2008).
  • Daval M, Diot-Dupuy F, Bazin R et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem.280(26), 25250–25257 (2005).
  • Towler MC HD. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res.100(3), 328–341 (2007).
  • Brooks BJ, Arch JR, Newsholme EA. Effect of some hormones on the rate of the triacylglycerol/fatty-acid substrate cycle in adipose tissue of the mouse in vivo. Biosci Rep.3(3), 263–267 (1983).
  • Hardie DG, Carling D. The AMP-activated protein kinase – fuel gauge of the mammalian cell? Eur. J. Biochem.246(2), 259–273 (1997).
  • Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med.8(11), 1288–1295 (2002).
  • Wu X, Motoshima H, Mahadev K et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes52(6), 1355–1363 (2003).
  • Westphal S, Borucki K, Taneva E, Makarova R, Luley C. Adipokines and treatment with niacin. Metabolism55(10), 1283–1285 (2006).
  • Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res.37(5), 907–925 (1996).
  • Li P, Zhu Z, Lu Y, Granneman JG. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-alpha. Am. J. Physiol. Endocrinol. Metab.289(4), E617–E626 (2005).
  • Yki-Jarvinen H. Thiazolidinediones. N. Engl. J. Med.351(11), 1106–1118 (2004).
  • Bensaid M, Gary-Bobo M, Esclangon A et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol.63(4), 908–914 (2003).
  • Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes. Relat. Metab. Disord.27(Suppl. 3), S17–S21 (2003).
  • Szapary PO, Bloedon LT, Samaha FF et al. Effects of pioglitazone on lipoproteins, inflammatory markers, and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.26(1), 182–188 (2006).
  • Trujillo ME, Scherer PE. Adiponectin – journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J. Intern. Med.257(2), 167–175 (2005).
  • Combs TP, Pajvani UB, Berg AH et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology145(1), 367–383 (2004).
  • Iwaki M, Matsuda M, Maeda N et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes52(7), 1655–1663 (2003).
  • Saha AK, Avilucea PR, Ye JM et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo.Biochem. Biophys Res Commun.314(2), 580–585 (2004).
  • Duffy D, Rader D. Endocannabinoid antagonism: blocking the excess in the treatment of high-risk abdominal obesity. Trends Cardiovasc. Med.17(2), 35–43 (2007).
  • Osei-Hyiaman D, Harvey-White J, Batkai S, Kunos G. The role of the endocannabinoid system in the control of energy homeostasis. Int. J. Obes. (Lond.)30(Suppl. 1), S33–S38 (2006).
  • Samaha FF, Szapary PO, Iqbal N et al. Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.26(3), 624–630 (2006).
  • Lenman A, Fowler CJ. Interaction of ligands for the peroxisome proliferator-activated receptor γ with the endocannabinoid system. Br. J. Pharmacol.151(8), 1343–1351 (2007).
  • Yu YH, Ginsberg HN. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism. Ann. Med.36(4), 252–261 (2004).
  • Bagnato C, Igal RA. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts. J. Biol. Chem.278(52), 52203–52211 (2003).
  • Smith SJ, Cases S, Jensen DR et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet.25(1), 87–90 (2000).
  • Chen HC, Smith SJ, Ladha Z et al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Invest.109(8), 1049–1055 (2002).
  • Stone SJ, Myers HM, Watkins SM et al. Lipopenia and skin barrier abnormalities in Dgat2-deficient mice. J. Biol. Chem.279(12), 11767–11776 (2004).
  • Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J. Biol. Chem.273(41), 26765–26771 (1998).
  • Cases S, Stone SJ, Zhou P et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem.276(42), 38870–38876 (2001).
  • Meegalla RL, Billheimer JT, Cheng D. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem. Biophys. Res. Commun.298(3), 317–323 (2002).
  • Yen CL, Monetti M, Burri BJ, Farese RV Jr. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J. Lipid Res.46(7), 1502–1511 (2005).
  • Orland MD, Anwar K, Cromley D et al. Acyl coenzyme A dependent retinol esterification by acyl coenzyme A: diacylglycerol acyltransferase 1. Biochim. Biophys. Acta1737(1), 76–82 (2005).
  • Chen HC, Farese RV, Jr. DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc. Med.10(5), 188–192 (2000).
  • Yu XX, Murray SF, Pandey SK et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology42(2), 362–371 (2005).
  • Dean N. Pharmacology of 2´-O-(2-methoxy)-ethyl-modified antisense oligonucleotide. In: Antisense Drug Technology: Principles, Strategies and Applications. Crooke ST (Ed.). NY, USA, 319–338 (2001).
  • Liu Y, Millar JS, Cromley DA et al. Knockdown of Acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and apoB secretion in mice. Biochim. Biophys. Acta (2008).
  • Phillips DI, Caddy S, Ilic V et al. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism45(8), 947–950 (1996).
  • Ebeling P, Essen-Gustavsson B, Tuominen JA, Koivisto VA. Intramuscular triglyceride content is increased in IDDM. Diabetologia41(1), 111–115 (1998).
  • Manco M, Mingrone G, Greco AV et al. Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism49(2), 220–224 (2000).
  • Russell AP. Lipotoxicity: the obese and endurance-trained paradox. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 4), S66–S71 (2004).
  • Schenk S, Cook JN, Kaufman AE, Horowitz JF. Postexercise insulin sensitivity is not impaired after an overnight lipid infusion. Am. J. Physiol. Endocrinol. Metab.288(3), E519–E525 (2005).
  • Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab.86(12), 5755–5761 (2001).
  • Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and Type 2 diabetes. Exp. Clin. Endocrinol. Diabetes111(3), 121–124 (2003).
  • Ellis BA, Poynten A, Lowy AJ et al. Long-chain acyl–CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am. J. Physiol. Endocrinol. Metab.279(3), E554–E560 (2000).
  • Lee JS, Pinnamaneni SK, Eo SJ et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J. Appl. Physiol.100(5), 1467–1474 (2006).
  • Liu L, Zhang Y, Chen N et al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J. Clin. Invest.117(6), 1679–1689 (2007).
  • Miyazaki Y, Mahankali A, Matsuda M et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in Type 2 diabetic patients. J. Clin. Endocrinol. Metab.87(6), 2784–2791 (2002).
  • Miyazaki Y, Mahankali A, Wajcberg E et al. Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in Type 2 diabetic patients. J. Clin. Endocrinol. Metab.89(9), 4312–4319 (2004).
  • Belfort R, Harrison SA, Brown K et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med.355(22), 2297–2307 (2006).
  • Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ. Res.95(9), 858–866 (2004).
  • Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA100(12), 7265–7270 (2003).
  • Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT), implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab.90(4), 2282–2289 (2005).
  • Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998).
  • Gu L, Okada Y, Clinton SK et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell. Biol.2, 275–281 (1998).
  • Weisberg SP, Hunter D, Huber R et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest.116(1), 115–124 (2006).
  • Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology211(6–8), 487–501 (2006).
  • Porcheray F, Viaud S, Rimaniol AC et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol.142(3), 481–489 (2005).
  • Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol.3(1), 23–35 (2003).
  • Cullen JP, Morrow D, Jin Y et al. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis195(1), e125–e133 (2007).
  • Ahn J, Lee H, Kim S, Ha T. Resveratrol inhibits TNF-α-induced changes of adipokines in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun.364(4), 972–977 (2007).
  • Das S, Das DK. Resveratrol: a therapeutic promise for cardiovascular diseases. Recent Patents Cardiovasc. Drug Discov.2(2), 133–138 (2007).
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117(1), 175–184 (2007).
  • Bouhlel MA, Derudas B, Rigamonti E et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab.6(2), 137–143 (2007).
  • Han KH, Chang MK, Boullier A et al. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor γ. J. Clin. Invest.106(6), 793–802 (2000).
  • Barlic J, Zhang Y, Foley JF, Murphy PM. Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor γ-dependent pathway. Circulation114(8), 807–819 (2006).
  • Charo IF. Macrophage polarization and insulin resistance: PPARγ in control. Cell Metab.6(2), 96–98 (2007).
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med.356(24), 2457–2471 (2007).
  • Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with Type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA298(10), 1180–1188 (2007).
  • Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes47(4), 507–514 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.