147
Views
8
CrossRef citations to date
0
Altmetric
Review

Predicting and preventing the cardiotoxicity of cancer therapy

&
Pages 1023-1033 | Published online: 10 Jan 2014

References

  • US National Center for Health Statistics, National Vital Statistics Reports, Vol. 54, No. 19, 28 June 2006.
  • Oeffinger KC, Mertens AC, Sklar CA et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med.355, 1572–1582 (2006).
  • Ewer MS and Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J. Clin. Oncol.23, 2900–2902 (2005).
  • Tan C, Tasaka H, Dou-Ping Y et al. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease: clinical evaluation with special reference to childhood leukemia. Cancer20, 333–353 (1967).
  • Lipshultz SE, Colan SD, Gelber RD et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med.324, 808–815 (1991).
  • Elliot P. Pathogenesis of cardiotoxicity induced by anthracyclines. Semin. Oncol.33, S2–S7 (2006).
  • Chen B, Peng X et al. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc. Toxicol.7(2), 114–121 (2007).
  • Vasquez-Vivar J, Martasek P, Hogg N et al. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry36, 11293–11297 (1997).
  • Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites. J. Clin. Invest.65, 128–135 (1980).
  • Kotamraju S, Konorev EA, Joseph J et al. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. J. Biol. Chem.43, 33585–33592 (2000).
  • Sawyer DB, Fukazawa R, Arstall MA et al. Daunorubicin-induced apoptosis in rat cardiac myocytes in inhibited by dexrazoxane. Circ. Res.84, 257–265 (1999).
  • Wojnowski L, Kulle B, Schirmer M et al. NAD(P)H oxidase and multidrug resistance protein genetic polmorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation112, 3754–3762 (2005).
  • Van Dalen EC, Caron HN, Dickinson HO, Kremer LCM. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev. 2005, Issue 1.
  • Minotti G, Sarvazyan N. The anthracyclines: when good things go bad. Cardiovasc. Toxicol.7, 53–55 (2007).
  • Steinberg JS, Cohen AJ, Wasserman AG et al. Acute arrhythmogenicity of doxorubicin administration. Cancer60, 1213–1218 (1987).
  • Bristow MR, Mason JW, Billingham ME, Daniels JR. Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am. Heart J.102, 709–718 (1981).
  • Bristow MR, Mason JW, Billingham ME, Daniels Jr. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann. Intern. Med.88, 168–175 (1978).
  • Herman EH, Zhang J, Lipshultz SE et al. Correlation between serum levels of cardiac troponin-T and the severity of chronic cardiomyopathy induced by doxorubicin. J. Clin. Oncol.17, 2237–2243 (1999).
  • Weesner KM, Bledso M, Chauvenet A, Wofford M. Exercise echocardiography in the detection of anthracycline cardiotoxicity. Cancer68(2), 435–438 (1991).
  • Wassmuth R, Lentzsch S, Erdbruegger U et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging – a pilot study. Am. Heart J.141(6), 1007–1013 (2001).
  • Von Hoff DD, Layard MW, Basa P et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med.91, 710–717 (1979).
  • Gennari A, Salvadori B, Donati S et al. Cardiotoxicity of epirubicin/paclitaxel-containing regimens: role of cardiac risk factors. J. Clin. Oncol.17(11), 3596–602 (1999).
  • Al-Shabanah OA, El-Kashef HA, Badary OA, Al-Bekairi AM, Elmazar MM. Effect of streptozotocin-induced hyperglycaemia on intravenous pharmacokinetics and acute cardiotoxicity of doxorubicin in rats. Pharmacol. Res.41(1), 31–37 (2000).
  • Sorensen K, Levitt GA, Bull C et al. Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer97(8), 1991–1998 (2003).
  • Lipshultz SE, Lipsitz SR, Sallan SE et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J. Clin. Oncol.20(23), 4517–4522 (2002).
  • Lipshultz SE, Orav EJ, Sanders SP et al. Limitations of fractional shortening as an index of contractility in pediatric patients infected with HEV. J. Pediatr.125, 563–570 (1994).
  • Giantris A, Abdurrahman L, Hinkle A et al. Anthracycline-induced cardiotoxicity in children and young adults. Crit. Rev. Oncol. Hematol.27, 53–68 (1998).
  • Kapusta L, Thijssen JM, Groot-Loonen J et al. Tissue Doppler imaging in detection of myocardial dysfunction in survivors of childhood cancer treated with anthracyclines. Ultrasound Med. Biol.26, 1099–1108 (2000).
  • Mason JW, Bristow MR, Billingham ME, Daniels JR. Invasive and noninvasive methods of assessing adriamycin cardiotoxic effects in man: superiority of histopathologic assessment using endomyocardial biopsy. Cancer Treat. Rep.62, 857–864 (1978).
  • Billingham ME, Mason JW, Bristow MR et al. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat. Rep.62, 865–872 (1978).
  • Suzuki T, Hayakhi D et al. Elevated B-type natriuretic peptide levels after anthracyclin administration. Am. Heart J.136, 362–363 (1998).
  • Okumura H, Iuchi K et al. Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haemetologica104, 158–163 (2000).
  • Aggarwal S, Pettersen MD, Bhambhani K, Gurczynski J, Thomas R, L’Ecuyer T. B-type natriuretic peptide as a marker for cardiac dysfunction in anthracycline-treated children. Pediatr. Blood Cancer49, 812–816 (2007).
  • Herman EH, Zhang J et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J. Clin. Oncol.17, 2237–2243 (1999).
  • Postma A, Bink-Boelkens MT, Beaufort-Krol Gc et al. Late cardiotoxicity after treatment for a malignant bone tumor. Med. Pediatr. Oncol.26, 240–237 (1996).
  • Schwartz RG, McKenzie WB, Alexander J et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven year experience using serial radionuclide angiocardiography. Am. J. Med.82, 1109–1118 (1987).
  • van Dalen EC, van den Berg M, Caron HN, Kremer LCM. Anthracycline-induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. Eur. J. Cancer42, 3199–3205 (2006).
  • Dranitsaris G, Rayson D, Vincent M et al. The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines. Breast Cancer Res. Treat.107, 443–450 (2008).
  • Harris L, Batist G, Belt R et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multi-center trial as first-line therapy of metastatic breast carcinoma. Cancer24, 25–36 (2002).
  • van Dalen EC, van der Pal JHJ, Caron HN, Kremer LCM. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst. Rev. 2006, Issue 4. Art. No.: CD005008. DOI: 10.1002/14651858.CD005008.pub2.
  • Lahtinen R, Kuikka J, Nousiainen T et al. Cardiotoxicity of epirubicin and doxorubicin: A double-blind randomized study. Eur. J. Haemotol.46, 301–305 (1991).
  • Cvetkovic RS, Scott LJ. Dexrazoxane. A review of its use for cardioprotection during anthracycline chemotherapy. Drugs65, 1005–1024 (2005).
  • Swain SM, Whaley FS, Gerber MC et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J. Clin. Oncol.15(4), 1318–1332 (1997).
  • Lipshultz SE, Rifai N, Dalton VM et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N. Engl. J. Med.351, 145–153 (2004).
  • Cardinale D, Sandri MT, Martinoni A et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J. Am. Coll. Cardiol.36, 517–522 (2000).
  • Cardinale D, Colombo A, Sandri MT et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation114, 2474–2481 (2006).
  • Santos DL, Moreno AJ, Leino RL et al. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol. Appl. Pharmacol.185, 218–227 (2002).
  • Kalay N, Basar E, Ozdogru I et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol.48, 2258–2262 (2006).
  • Tallaj JA, Franco V, Rayburn BK et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J. Cardiac Fail.9(5), S86 (2003).
  • ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. J. Am. Coll. Cardiol.46, 1116–1143 (2005).
  • McGuire WP, Rowinsky EK, Rosenshein NB et al. Taxol: a unique antineioplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med.111, 273–279 (1989).
  • Gianni L, Munzone E, Capri G et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J. Clin. Oncol.13, 2688–2699 (1995).
  • Gehl J, Boesgaard M, Paaske T et al. Combined doxorubicin and paclitaxel in advanced breast cancer: effective and cardiotoxic. Ann. Oncol.7, 687–693 (1996).
  • Pentassuglia L, Timolati F, Seifriz F, Abudukadier K, Suter TM, Zuppinger C. Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Exp. Cell Res.313(8), 1588–601 (2007).
  • Gianni L, Capri G. Experience at the Instituto Nazionale Tumori with paclitaxel in combination with doxorubicin in women with untreated breast cancer. Semin. Oncol.24, S3-1–S3-3 (1997).
  • Perotti S, Cresta G, Grasselli G et al. Cardiotoxic effects of anthracycline-taxane combinations. Expert Opin. Drug Saf.2, 59–71 (2003).
  • Craddock C. Haemopoietic stem-cell transplantation: recent progress and future promise. Lancet Oncol.1, 227–234 (2000).
  • De Jonge ME, Huitema A, Rodenhuis S, Beijnen J. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet.44(11), 1135–1164 (2005).
  • Lee CK, Harman GS, Hohl RJ et al. Fatal cyclophosphamide cardiomyopathy: its clinical course and treatment. Bone Marrow Transplant.18, 573–577 (1996).
  • Friedman HS, Colvin OM, Aisaka K et al. Glutathione protects cardiac and skeletal muscle from cyclophosphamide-induced toxicity. Cancer Res.50, 2455–2462 (1990).
  • Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer7, 332–344 (2007).
  • Slamon DJ, Leyland-Jones B, Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344(11), 783–792 (2001).
  • Seidman A, Hudis C, Pierri MK et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol.20, 1215–1221 (2002).
  • Lee KF, Simon H, Chen H et al. Requirement for neuregulin receptor ERBB2 in neural and cardiac development. Nature378, 394–398 (1995).
  • Gassman M, Casagranda F, Orioli D et al. Aberrant neural and cardiac development in mice lacking the ERBB4 neuregulin receptor. Nature378, 390–394 (1995).
  • Meyer D and Birchmeier C. Multiple essential functions of neuregulin in development. Nature378, 386–390 (1995).
  • Cote GM, Miller TA, LeBrasseur NK et al. Neuregulin-1 α and β isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Exp. Cell Res.311, 135–146 (2005).
  • Zhao YY, Sawyer DB, Baliga RR et al. Neuregulins promote survival and growth of cardiac myocytes. J. Biol. Chem.273, 10261–10269 (1998).
  • Perez EA, Byrne Ja, Hammond IW et al. Results of an analysis of cardiac function in 2812 patients treated with lapatinib. Proc. Am. Soc. Clin. Oncol.24, (Abstr 583) (2006).
  • Geyer CE, Forster J, Lindquist D et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med.355, 2733–2743 (2006).
  • Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood105, 2640–2653 (2005).
  • Kerkela R, Luanda G, Yacobi R et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med.12, 908–916 (2006).
  • Cohen MH, Williams G, Johnson JR et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res.8, 935–942 (2002).
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23, 1011–1027 (2005).
  • Chu TF, Rupnick MA, Kerkela R et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet370, 2011–2019 (2007).
  • Strevel EL, Ing DS, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J. Clin. Oncol.25, 3362–3371 (2007).
  • Desai J, Yassa L, Marqusae E et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med.145, 660–664 (2006).
  • Eskens F, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur. J. Cancer42, 3127–3139 (2006).
  • Shiojima I, Sato K, Izumiya Y et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest.115, 2108–2118 (2005).
  • Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE. Radiation-associated cardiovascular disease. Crit. Rev. Oncol./Hematol.45, 55–75 (2003).
  • Gyenes G, Rutqvist LE, Liedberg A et al. Long-term cardiac morbidity and mortality in a randomized trial of pre- and post-operative radiation therapy versus surgery alone in primary breast cancer. Radiother. Oncol.48(2), 185–90 (1998).
  • Martin RG, Ruckdeschel J, Chang P et al. Radiation-related pericarditis. Am. J. Cardiol.35, 216–220 (1975).
  • Carlson RG, Mayfield WR, Normann S et al. Radiation-associated valvular disease. Chest99, 538–545 (1991).
  • Hooning MJ, Botma A, Aleman B et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J. Natl Cancer Inst.99, 365–75 (2007).
  • Miltenyi Z, Keresztes K, Garai I et al. Radiation-induced coronary artery disease in Hodgkin’s disease. Cardiovasc. Radiat. Med.5, 38–43 (2004).
  • McEniery PT, Dorosti K, Schiavone WA et al. Clinical and angiographic features of coronary artery disease after chest irradiation. Am. J. Cardiol.60, 1020–1024 (1987).
  • Senkus-Konefka E, Jassem J. Cardiovascular effects of breast cancer radiotherapy. Cancer Treat. Rev.33, 578–593 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.