172
Views
16
CrossRef citations to date
0
Altmetric
Review

Influence of CD4+/CD25+ regulatory T cells on atherogenesis in patients with end-stage kidney disease

, &
Pages 987-997 | Published online: 10 Jan 2014

References

  • Meier P, Dayer E, Ronco P, Blanc E. Dysregulation of IL-2/IL-2R system alters proliferation of early activated CD4+ T cell subset in patients with end-stage renal failure. Clin. Nephrol.63(1), 8–21 (2005).
  • Kronenberg F, Lingenhel A, Neyer U et al. Prevalence of dyslipidemic risk factors in hemodialysis and CAPD patients. Kidney Int.84(Suppl. 3), S113–S116 (2003).
  • Meier P, Spertini F, Blanc E, Burnier M. Oxidized low-density lipoproteins activate CD4+ T cell apoptosis in patients with end-stage renal disease through Fas engagement. J. Am. Soc. Nephrol.18(1), 331–342 (2007).
  • Wanner C, Zimmermann J, Schwedler S, Metzger T. Inflammation and cardiovascular risk in dialysis patients. Kidney Int.80(Suppl. 3), S99–S102 (2002).
  • Ziouzenkova O, Asatryan L, Akmal M et al. Oxidative cross-linking of ApoB100 and hemoglobin results in low density lipoprotein modification in blood. Relevance to atherogenesis caused by hemodialysis. J. Biol. Chem.274(27), 18916–18924 (1999).
  • Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci.92(9), 3893–3897 (1995).
  • Hansson GK, Zhou X, Tornquist E, Paulsson G. The role of adaptive immunity in atherosclerosis. Ann. NY Acad. Sci.902, 53–62 (2000).
  • Benagiano M, Azzurri A, Ciervo A et al. T-helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc. Natl Acad. Sci.100(11), 6658–6663 (2003).
  • Libby P. Inflammation in atherosclerosis. Nature420(6917), 868–874 (2002).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4), 330–336 (2003).
  • Ramsdell F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity19(2), 165–168 (2003).
  • Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol.5(4), 271–283 (2005).
  • Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat. Immunol.2(9), 816–822 (2001).
  • Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J. Clin. Invest.114 (9), 1209–1217 (2004).
  • Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med.13(3), 108–116 (2007).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299 (5609), 1057–1061 (2003).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3 J. Exp. Med.198 (12), 1875–1886 (2003).
  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol.172 (23), 5149–5153 (2004).
  • Vieira PL, Christensen JR, Minaee S et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells J. Immunol.172(23), 5986–5993 (2004).
  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203 (11), 1693–1700 (2004).
  • Liu W, Putnam Al, Xu-yu Z, Szot GL et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med.203 (11), 1701–1711 (2006).
  • Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188(2), 287–296 (1998).
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352(6), 1685–1695 (2005).
  • Binder CJ, Chang MK, Shaw PX et al. Innate and acquired immunity in atherogenesis. Nat. Med.8(11), 1218–1226 (2002).
  • Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am. J. Pathol.149(2), 359–367 (1996).
  • Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation102(24), 2919–2922 (2000).
  • Taleb S, Tedgui A, Mallat Z. Regulatory T-cell immunity and its relevance to atherosclerosis. J. Intern. Med.263(5), 489–499 (2008).
  • Kuiper J, van Puijvelde GH, van Wanrooij EJ et al. Immunomodulation of the inflammatory response in atherosclerosis. Curr. Opin. Lipidol.18(5), 521–526 (2007).
  • Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc. Med.17(4), 113–118 (2007).
  • George J, Haratherosclerosis D, Gilburd B et al. Adoptive transfer of β(2)-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation102(15), 1822–1827 (2000).
  • Mor A, Planer D, Luboshits G et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol.27(4), 893–900 (2007).
  • Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation114(12), 2047–2055 (2006).
  • Ait-Oufella H, Salomon BL, Potteaux S et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med.12(2), 178–180 (2006).
  • Mor A, Luboshits G, Planer D, Keren G, Geoge J. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur. Heart J.27(21), 2530–2537 (2006).
  • Smith DA, Irving SD, Sheldon J, Cole D, Kaski JC. Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation104(7), 746–749 (2001).
  • Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Boersma E, Simoons ML, Zeiher AM. Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation107(16), 2109–2114 (2003).
  • Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev.86(5), 515–581 (2006).
  • van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol.27(12), 2677–2683 (2007).
  • Steffens S, Burger F, Pelli G et al. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation114(18), 1977–1984 (2006).
  • Taleb S, Herbin O, Ait-Oufella H et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler. Thromb. Vasc. Biol.27(12), 2691–2698 (2007).
  • De Rosa V, Procaccini C, Calì G et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity26(2), 241–255 (2007).
  • Caro JF, Kolaczynski JW, Nyce MR et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet348(9021), 159–161 (1996).
  • Sharma K, Considine RV, Michael B et al. Plasma leptin is partly cleared by the kidney and is elevated in hemodialysis patients. Kidney Int.51(6), 1980–1985 (1997).
  • Nordfors L, Lonnqvist F, Heimburger O, Danielsson A, Schalling M, Stenvinkel P. Low leptin gene expression and hyperleptinemia in chronic renal failure. Kidney Int.54(4), 1267–1275 (1998).
  • Heimburger O, Lonnqvist F, Danielsson A, Nordenstrom J, Stenvinkel P. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J. Am. Soc. Nephrol.8(9), 1423–1430 (1997).
  • Bossola M, Muscaritoli M, Valenza V et al. Anorexia and serum leptin levels in hemodialysis patients. Nephron Clin. Pract.97(3), 76–82 (2004).
  • Scholze A, Rattensperger D, Zidek W, Tepel M. Low serum leptin concentration predicts mortality in patients with chronic kidney disease stage 5 on hemodialysis therapy. Obesity15(6), 1617–1622 (2007).
  • Mahajan D, Wang Y, Qin X et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J. Am. Soc. Nephrol.17(10), 2731–2741 (2006).
  • Prichard SS. Impact of dyslipidemia in end-stage renal disease. J. Am. Soc. Nephrol.14(Suppl. 4), S315–S320 (2003).
  • Meier P, Dayer E, Blanc E, Wauters JP. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J. Am. Soc. Nephrol.13(1), 204–212 (2002).
  • Kischkel FC, Hellbardt S, Behrmann I et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J.14(22), 5579–5588 (1995).
  • Clement MV, Stamenkovic I. Fas and tumor necrosis factor receptor-mediated cell death: similarities and distinctions. J. Exp. Med.180(2), 557–567 (1994).
  • Peter ME, Kischkel FC, Scheuerpflug CG, Medema JP, Debatin KM, Krammer PH. Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. Eur. J. Immunol.27(5), 1207–1212 (1997).
  • Sata M, Walsh K. Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. J. Biol. Chem.273(50), 33103–33106 (1998).
  • Napoli C, Quehenberger O, De Nigris F, Abete P, Glass CK, Palinski W. Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J.14(13), 1996–2007 (2000).
  • Yates J, Rovis F, Mitchell P et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int. Immunol.19(6), 785–799 (2007).
  • Meier P, von Fliedner V, Markert M, van Melle G, Deppisch R, Wauters JP. One-year immunological evaluation of chronic hemodialysis in end-stage renal disease patients. Blood Purif.18(2), 128–137 (2000).
  • Gomez J, Martinez-A C, Gonzalez A, Garcia A, Rebollo A. The Bcl-2 gene is differentially regulated by IL-2 and IL-4: role of the transcription factor NF-AT. Oncogene17(10), 1235–1243 (1998).
  • Lorenz HM, Hieronymus T, Grunke M, Manger B, Kalden JR. Differential role for IL-2 and IL-15 in the inhibition of apoptosis in short-term activated human lymphocytes. Scand. J. Immunol.45(6), 660–669 (1997).
  • Maron R, Sukhova G, Faria AM et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation106(13), 1708–1715 (2002).
  • George J, Yacov N, Breitbart E et al. Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with β 2-glycoprotein I. Cardiovasc. Res.62(3), 603–609 (2004).
  • George J, Afek A, Gilburd B, Shoenfeld Y, Harats D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol.38(3), 900–905 (2001).
  • Mallat Z, Besnard S, Duriez M et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res.85(8), e17–e24 (1999).
  • Emeson EE, Shen ML, Bell CG, Qureshi A. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am. J. Pathol.149(2), 675–685 (1996).
  • Mausner-Fainberg K, Luboshits G, Mor A et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells. Atherosclerosis197(2), 829–839 (2008).
  • Wanner C, Krane V, März W et al. Atorvastatin in patients with Type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med.353(3), 238–248 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.