206
Views
45
CrossRef citations to date
0
Altmetric
Review

Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology

, , , &
Pages 1259-1277 | Published online: 10 Jan 2014

References

  • Urban P, De Benedetti E. Thrombosis: the last frontier of coronary stenting? Lancet369(9562), 619–621 (2007).
  • Hannan E, Racz MJ, Walford G et al. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N. Engl. J. Med.352(21), 2174–2183 (2005).
  • Seung KB, Park DW, Kim YH et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N. Engl. J. Med.358(17), 1781–1792 (2008).
  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J. Biomed. Mater. Res. B Appl. Biomater.74(1), 570–581 (2005).
  • Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J. Vasc. Surg.37(2), 472–480 (2003).
  • Stewart SF , Lyman DJ. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J. Biomech.25(3), 297–310 (1992).
  • Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Medical Med. Biol. Eng. Comput.45(4), 327–336 (2007).
  • Noh H, Vogler EA. Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials28(3), 405–422 (2007).
  • Hasirci V, Vrana E, Zorlutuna P et al. Nanobiomaterials: a review of the existing science and technology, and new approaches. J. Biomater. Sci. Polym. Ed.17(11), 1241–1268 (2006).
  • Miller DC, Webster TJ, Haberstroh KM. Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design. Expert Rev. Med. Devices1(2), 259–268 (2004).
  • Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol.26(6), 338–344 (2008).
  • Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials24(14), 2549–2557 (2003).
  • Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg.31 (6), 627–636 (2006).
  • Kannan RY, Salacinski HJ, De GJ et al. The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules7(1), 215–223 (2006).
  • Kannan RY, Salacinski HJ, Sales KM, Butler PE, Seifalian AM. The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study. Cell Biochem. Biophys.45(2), 129–136 (2006).
  • Punshon G, Sales KM, Vara DS, Hamilton G, Seifalian AM. Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif.41(2), 321–335 (2008).
  • Hoenig MR, Campbell GR, Campbell JH. Vascular grafts and the endothelium. Endothelium13(6), 385–401 (2006).
  • Zilla P, von OU, Deutsch M. The endothelium: a key to the future. J. Card. Surg.8(1), 32–60 (1993).
  • Salacinski HJ, Tai NR, Punshon G, Giudiceandrea A, Hamilton G, Seifalian AM. Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress. Eur. J. Vasc. Endovasc. Surg.20(4), 342–352 (2000).
  • Herring M, Gardner A, Glover J. Single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery84(4), 498–504 (1978).
  • Tiwari A, Salacinski HJ, Hamilton G, Seifalian AM. Tissue engineering of vascular bypass grafts: role of endothelial cell extraction. Eur. J. Vasc. Endovasc. Surg.21(3), 193–201 (2001).
  • Kaushal S, Amiel GE, Guleserian KJ et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med.7(9), 1035–1040 (2001).
  • DiMuzio P, Tulenko T. Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J. Vasc. Surg.45(Suppl.A), A99–A103 (2007).
  • Bordenave L, Fernandez P, Remy-Zolghadri M, Villars S, Daculsi R, Midy D. In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization. Clin. Hemorheol. Microcirc.33(3), 227–234 (2005).
  • Rotmans JI, Heyligers JM, Verhagen HJ et al.In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation112(1), 12–18 (2005).
  • Silber S. Capturing circulating endothelial progenitor cells: a new concept tested in the HEAING studies. Minerva Cardioangiol.54(1), 1–3 (2006).
  • Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilton G, Seifalian AM. Cardiovascular tissue engineering: state of the art. Pathol. Biol. (Paris)53(10), 599–612 (2005).
  • Wu B, Gerlitz B, Grinnell BW, Meyerhoff ME. Polymeric coatings that mimic the endothelium: combining nitric oxide release with surface-bound active thrombomodulin and heparin. Biomaterials28(28), 4047–4055 (2007).
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science231(4736), 397–400 (1986).
  • Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng.122(3), 216–223 (2000).
  • Isenberg BC, Tranquillo RT. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng.31(8), 937–949 (2003).
  • Isenburg JC, Simionescu DT, Vyavahare NR. Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials25(16), 3293–3302 (2004).
  • Thakrar RR, Patel VP, Hamilton G, Fuller BJ, Seifalian AM. Vitreous cryopreservation maintains the viscoelastic property of human vascular grafts. FASEB J.20(7), 874–881 (2006).
  • Bader A, Steinhoff G, Strobl K et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation70(1), 7–14 (2000).
  • Dardik H, Wengerter K, Qin F et al. Comparative decades of experience with glutaraldehyde-tanned human umbilical cord vein graft for lower limb revascularization: an analysis of 1275 cases. J. Vasc. Surg.35(1), 64–71 (2002).
  • Kobayashi T, Cooper DK. Anti-Gal, α-Gal epitopes, and xenotransplantation. Subcell. Biochem.32, 229–257 (1999).
  • Spark JI, Yeluri S, Derham C et al. Incomplete cellular depopulation may explain the high failure rate of bovine ureteric grafts. Br. J. Surg.95(5), 582–585 (2008).
  • Poh M, Boyer M, Solan A et al. Blood vessels engineered from human cells. Lancet365(9477), 2122–2124 (2005).
  • Cheng ST, Chen ZF, Chen GQ. The expression of cross-linked elastin by rabbit blood vessel smooth muscle cells cultured in polyhydroxyalkanoate scaffolds. Biomaterials29(31), 4187–94 (2008).
  • Motlagh D, Allen J, Hoshi R, Yang J, Lui K, Ameer G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. A82(4), 907–916 (2007).
  • Gao J, Crapo P, Nerem R, Wang Y. Coexpression of elastin and collagen leads to highly compliant engineered blood vessels. J. Biomed. Mater. Res. A85(4), 1120–1128 (2008).
  • Gong Z, Niklason E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J.22(6), 1635–1648 (2008).
  • Lepidi S, Abatangelo G, Vindigni V et al.In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold. FASEB J.20(1), 103–105 (2006).
  • Remuzzi A, Mantero S, Colombo M et al. Vascular smooth muscle cells on hyaluronic acid: culture and mechanical characterization of an engineered vascular construct. Tissue Eng.10(5–6), 699–710 (2004).
  • Nieponice A, Soletti, Guan J et al. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials29(7), 825–833 (2008).
  • Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials24(13), 2303–2308 (2003).
  • Baguneid MS, Seifalian AM, Salacinski HJ, Murray D, Hamilton G, Walker MG. Tissue engineering of blood vessels. Br. J. Surg.93(3), 282–290 (2006).
  • Baguneid M, Murray D, Salacinski HJ et al. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem.39(Pt 2), 151–157 (2004).
  • L‘Heureux N, Dusserre N, Konig G et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med.12(3), 361–365 (2006).
  • L‘Heureux N, McAllister TN, de la Fuente M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med.357(14), 1451–1453 (2007).
  • Campbell JH, Efendy J, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ. Res.85(12), 1173–1178 (1999).
  • Cao Y, Zhang B, Croll T et al. Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity. J. Biomed. Mater. Res. A PMID: 18200539 (2008) (Epub ahead of print).
  • Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Froschl A, Zilla P. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac. Surg.71(5 Suppl.), S327–S331 (2001).
  • Laube HR, Duwe J, Rutsch W, Konertz W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg.120(1), 134–141 (2000).
  • Gabbieri D, Dohmen PM, Koch C, Lembcke A, Rutsch W, Konertz W. Aortocoronary endothelial cell-seeded polytetrafluoroethylene graft: 9-year patency. Ann. Thorac. Surg.83(3), 1166–1168 (2007).
  • Rashid ST, Fuller B, Hamilton G, Seifalian AM. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J.22(6), 2084–2089 (2008).
  • Tai NR, Giudiceandrea A, Salacinski HJ, Seifalian AM, Hamilton G. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg.30(5), 936–945 (1999).
  • Kannan RY, Salacinski HJ, Butler PE, Seifalian AM. Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc. Chem. Res.38(11), 879–84 (2005).
  • Kannan RY, Salacinski HJ, Edirisinghe MJ, Hamilton G, Seifalian AM. Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessels for an artificial capillary bed. Biomaterials27(26), 4618–4626 (2006).
  • Kannan RY, Salacinski HJ, Odlyha M, Butler PE, Seifalian AM. The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Biomaterials27(9), 1971–1979 (2006).
  • Gopakumar TG, Xanthos M, Xanthos M. Effect of nanofillers on the properties of flexible protective polymer coatings. Polymer Composites27(4), 368–380 (2006).
  • Gupta A, Seifalian AM, Ahmad Z, Edirisinghe MJ, Winslet MC. Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. J. Bioact. Compat. Polym.22(3), 265–280 (2007).
  • Kidane AG, Edirisinghe MJ, Bonhoeffer P, Seifalian AM. Flow behaviour of a POSS biopolymer solution. Biorheology44(4), 265–272 (2007).
  • Kotch FW, Raines RT. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA103(9), 3028–3033 (2006).
  • Woolfson DN, Ryadnov MG. Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr. Opin. Chem. Biol.10(6), 559–567 (2006).
  • Miao M, Cirulis JT, Lee S, Keeley FW. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides. Biochemistry44(43), 14367–14375 (2005).
  • Bellingham CM, Lillie MA, Gosline JM et al. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers70(4), 445–455 (2003).
  • Gauba V, Hartgerink JD. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc.129(9), 2683–2690 (2007).
  • Endo M, Koyama S, Matsuda Y, Hayashi T, Kim YA. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube – nylon-based composite. Nano Lett.5(1), 101–105 (2005).
  • Koyama S, Haniu H, Osaka K et al. Medical application of carbon-nanotube-filled nanocomposites: the microcatheter. Small2(12), 1406–1411 (2006).
  • Kim JY, Khang D, Lee JE, Webster TJ. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. J. Biomed. Mater. Res. A (2008).
  • Hurt RH, Monthioux M, Kane A. Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon44(6), 1028–1033 (2006).
  • Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc. Res.78(3), 413–421 (2008).
  • Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc. Interv.70(4), 477–484 (2007).
  • Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc. Med.18(1), 33–37 (2008).
  • Adams B, Xiao Q, Xu Q. Stem cell therapy for vascular disease. Trends Cardiovasc. Med.17(7), 246–251 (2007).
  • Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev.60(2), 199–214 (2008).
  • Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv. Drug Deliv. Rev.60(2), 215–228 (2008).
  • Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol.11(4), 381–387 (2007).
  • Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther.15(3), 467–480 (2007).
  • Alobaid N, Salacinski HJ, Sales KM et al. Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: an in vitro evaluation. Eur. J. Vasc. Endovasc. Surg.32(1), 76–83 (2006).
  • de Mel A, Jell G, Stevens M, Seifalian AM. Biofunctionalisation of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules (2008)
  • Miller DC, Thapa A, Haberstroh KM, Webster TJ. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials25(1), 53–61 (2004).
  • Miller DC, Haberstroh KM, Webster TJ. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J. Biomed. Mater. Res. A.73A(4), 476–484 (2005).
  • Miller DC, Haberstroh KM, Webster TJ. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J. Biomed. Mater. Res. A81A(3), 678–684 (2007).
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng.12(5), 1197–1211 (2006).
  • Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng.12(3), 435–447 (2006).
  • Norman JJ, Desai TA. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng.34(1), 89–101 (2006).
  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin G. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev.59(14), 1413–1433 (2007).
  • Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A83(4), 999–1008 (2007).
  • Stankus JJ, Soletti L, Fujimoto K, Hong Y, Vorp DA, Wagner WR. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials28(17), 2738–2746 (2007).
  • Xu J, Zhou X, Ge H et al. Endothelial cells anchoring by functionalized yeast polypeptide. J. Biomed. Mater. Res. A PMID: 18228253 (2008) (Epub ahead of print).
  • He W, Ma Z, Teo WE et al. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J. Biomed. Mater. Res. A PMID: 18491396 (2008) (Epub ahead of print).
  • Matsusaki M, Sakaguchi H, Serizawa T, Akashi M. Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J. Biomater. Sci. Polym. Ed.18(6), 775–783 (2007).
  • Huang M, Vitharana SN, Peek J, Coop T, Berkland C. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules8(5), 1607–1614 (2007).
  • Huang M, Berkland C. Controlled release of Repifermin(R) from polyelectrolyte complexes stimulates endothelial cell proliferation. J. Pharm. Sci. PMID: 18425807 (2008) (Epub ahead of print).
  • Boura C, Muller S, Vautier D et al. Endothelial cell - interactions with polyelectrolyte multilayer films. Biomaterials26(22), 4568–4575 (2005).
  • Zhong Y, Whittington CF, Haynie DT. Stimulated release of small molecules from polyelectrolyte multilayer nanocoatings. Chem. Commun. (Camb.)14(14), 1415–1417 (2007).
  • Ahmad Z, Zhang HB, Farook U, Edirisinghe M, Stride E, Colombo P. Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J. R. Soc. Interface5(27), 1255–1261 (2008).
  • Cohen-Sela E, Rosenzweig O, Gao J et al. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J. Control. Release113(1), 23–30 (2006).
  • Lim HJ, Nam HY, Lee BH, Kim DJ, Ko JY, Park JS. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol. Prog.23(3), 693–697 (2007).
  • Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E. Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J. Tissue Eng. Regen. Med.1(4), 318–321 (2007).
  • Chen S, Hilcove S, Ding S. Exploring stem cell biology with small molecules. Mol. Biosyst.2(1), 18–24 (2006).
  • Schugar RC, Robbins PD, Deasy BM. Small molecules in stem cell self-renewal and differentiation. Gene Ther.15(2), 126–135 (2008).
  • Ding S, Schultz PG. A role for chemistry in stem cell biology. Nat. Biotechnol.22(7), 833–840 (2004).
  • Xu YY, Li YJ, Guan H et al. The effect of vascular endothelia growth factor encapsulated in nanoparticles on chronic limb ischemia. Zhonghua Wai Ke Za Zhi42(1), 58–61 (2004).
  • Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors - biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Card.49(10), 1015–1026 (2007).
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine1(1), 22–30 (2005).
  • Zweers M, Engbers GH, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(D-lactic-co-glycolic acid) nanoparticles. J. Control. Release114(3), 317–324 (2006).
  • Mei L, Sun H, Jin X et al. Modified paclitaxel-loaded nanoparticles for inhibition of hyperplasia in a rabbit arterial balloon injury model. Pharm. Res.24(5), 955–962 (2007).
  • Westedt U, Kalinowski M, Wittmar M et al. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Control. Release119(1), 41–51 (2007).
  • Fields RC, Solan A, McDonagh KT, Niklason E, Lawson JH. Gene therapy in tissue-engineered blood vessels. Tissue Eng.9(6), 1281–1287 (2003).
  • Yla-Herttuala S, Martin JF. Cardiovascular gene therapy. Lancet355(9199), 213–222 (2000).
  • Gaffney MM, Hynes SO, Barry F, O’Brien T. Cardiovascular gene therapy: current status and therapeutic potential. Br. J. Pharmacol.152(2), 175–188 (2007).
  • Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol. Ther.15(7), 1233–1247 (2007).
  • Conte MS. Molecular engineering of vein bypass grafts. J. Vasc. Surg.45, 74A–81A (2007).
  • Jabr-Milane van V, Devalapally H et al. Multi-functional nanocarriers for targeted delivery of drugs and genes. J. Control. Release130(2), 121–128 (2008).
  • Alexander JH, Hafley G, Harrington RA et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA294(19), 2446–2454 (2005).
  • Berceli SA, Hevelone ND, Lipsitz SR et al. Surgical and endovascular revision of infrainguinal vein bypass grafts: analysis of midterm outcomes from the PREVENT III trial. J. Vasc. Surg.46(6), 1173–1179 (2007).
  • Conte MS, Bandyk DF, Clowes AW et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg.43(4), 742–751 (2006).
  • Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J. Vasc. Surg.44(3), 633–641 (2006).
  • Luo ZY, Akita GY, Date T et al. Adenovirus-mediated expression of β-adrenergic receptor kinase C-terminus reduces intimal hyperplasia and luminal stenosis of arteriovenous polytetrafluoroethylene grafts in pigs. Circulation111(13), 1679–1684 (2005).
  • Petrofski JA, Hata JA, Williams M et al. A Gβγ inhibitor reduces intimal hyperplasia in aortocoronary saphenous vein grafts. J. Thorac. Cardiovasc. Surg.130(6), 1683–1690 (2005).
  • Petrofski JA, Hata JA, Gehrig TR et al. Gene delivery to aortocoronary saphenous vein grafts in a large animal model of intimal hyperplasia. J. Thorac. Cardiovasc. Surg.127(1), 27–33 (2004).
  • Wolff RA, Ryomoto M, Stark VE et al. Antisense to transforming growth factor-β1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J. Vasc. Surg.41(3), 498–508 (2005).
  • Schepers A, Eefting D, Bonta PI et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol.26(9), 2063–2069 (2006).
  • Egashira K, Nakano K, Ohtani K et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent stenosis in rabbits and monkeys. Arterioscler. Thromb. Vasc. Biol.27(12), 2563–2568 (2007).
  • Miyake T, Aoki M, Shiraya S et al. Inhibitory effects of NFκB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J. Mol. Cell Cardiol.41(3), 431–440 (2006).
  • Miyake T, Aoki M, Morishita R. Inhibition of anastomotic intimal hyperplasia using a chimeric decoy strategy against NFκB and E2F in a rabbit model. Cardiovasc. Res.79(4), 706–14 (2008).
  • Andrade JD, Hlady V. Protein adsorption and materials biocompatibility - a tutorial review and suggested hypotheses. Adv. Polymer Sci.79, 1–63 (1986).
  • Kidane AG, Salacinski H, Tiwari A, Bruckdorfer KR, Seifalian AM. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules5(3), 798–813 (2004).
  • Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J. Biomed. Mater. Res. B Appl. Biomater.82(1), 100–108 (2007).
  • Devine C, Hons B, McCollum C. Heparin-bonded Dacron or polytetrafluoroethylene for femoropopliteal bypass grafting: a multicenter trial. J. Vasc. Surg.33(3), 533–539 (2001).
  • Devine C, McCollum C. Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: five-year results of a prospective randomized multicenter clinical trial. J. Vasc. Surg.40(5), 924–931 (2004).
  • Bosiers M, Deloose K, Verbist J et al. Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. J. Vasc. Surg.43(2), 313–318 (2006).
  • Verma S, Marsden PA. Nitric oxide-eluting polyurethanes–vascular grafts of the future? N. Engl. J. Med.353(7), 730–731 (2005).
  • Ahanchi SS, Tsihlis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J. Vasc. Surg.45, 64A–73A (2007).
  • Frost MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials26(14), 1685–1693 (2005).
  • Miller MR, Megson I. Review - recent developments in nitric oxide donor drugs. Br. J. Pharmacol.151(3), 305–321 (2007).
  • Keefer K. Biomaterials: thwarting thrombus. Nat. Mater.2(6), 357–358 (2003).
  • Zhang H, Annich GM, Miskulin J et al. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application. J. Am. Chem. Soc.125(17), 5015–5024 (2003).
  • Kapadia MR, Chow W, Tsihlis ND et al. Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J. Vasc. Surg.47(1), 173–182 (2008).
  • Ishii Y, Sakamoto S, Kronengold RT et al. A novel bioengineered small-caliber vascular graft incorporating heparin and sirolimus: excellent 6-month patency. J. Thorac. Cardiovasc. Surg.135(6), 1237–1245 (2008).
  • Tseng PY, Jordan SW, Sun X, Chaikof E. Catalytic efficiency of a thrombomodulin-functionalized membrane-mimetic film in a flow model. Biomaterials27(13), 2768–2775 (2006).
  • Hashi CK, Zhu Y, Yang GY et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl Acad. Sci. USA104(29), 11915–11920 (2007).
  • Chua KN, Chai C, Lee PC et al. Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials27(36), 6043–6051 (2006).
  • Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells24(11), 2391–2397 (2006).
  • Davis ME, Motion JP, Narmoneva DA et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation111(4), 442–450 (2005).
  • Carampin P, Conconi MT, Lora S et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J. Biomed. Mater. Res. A80(3), 661–668 (2007).
  • Feng SS, Zeng W, Teng Y et al. Vitamin E TPGS-emulsified poly(lactic-co-glycolic acid) nanoparticles for cardiovascular restenosis treatment. Nanomed.2(3), 333–344 (2007).
  • Varshosaz J, Soheili M. Production and in vitro characterization of lisinopril-loaded nanoparticles for the treatment of restenosis in stented coronary arteries. J. Microencapsul.1–9 (2008).
  • Gou M, Li X, Dai M et al. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int. J. Pharm.359(1-2), 228–33 (2008).
  • Banai S, Chorny M, Gertz SD et al. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials26(4), 451–461 (2005).
  • Deshpande D, Devalapally H, Amiji M. Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon co-administration with ceramide using biodegradable polymeric nanoparticles. Pharm. Res. (2008).
  • Cyrus T, Zhang H, Allen JS et al. Intramural delivery of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler. Thromb. Vasc. Biol.28(5), 820–826 (2008).
  • Lanza GM, Winter PM, Caruthers SD et al. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomed.1(3), 321–329 (2006).
  • Kolodgie FD, John M, Khurana C et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation106(10), 1195–1198 (2002).
  • Epstein H, Berger V, Levi I et al. Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. J. Control. Release117(3), 322–332 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.