765
Views
77
CrossRef citations to date
0
Altmetric
Reviews

Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence

, , , &
Pages 1065-1077 | Published online: 10 Jan 2014

References

  • Hoefsloot W, van Ingen J, Andrejak C et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: A NTM-NET collaborative study. Eur. Respir. J. (2013) ( Epub ahead of print).
  • van Ingen J, Bendien SA, de Lange WCM et al. Clinical relevance of nontuberculous mycobacteria isolated in the Nijmegen-Arnhem region, the Netherlands. Thorax 64, 502–506 (2009).
  • Hoefsloot W, Boeree MJ, van Ingen J et al. The rising incidence and clinical relevance of Mycobacterium malmoense: a review of the literature. Int. J. Tuberc. Lung Dis. 12, 987–993 (2008).
  • Griffith DE, Aksamit T, Brown-Elliot BA et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367–416 (2007).
  • Andréjak C, Thomsen VØ, Johansen IS et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am. J. Respir. Crit. Care Med. 181, 514–521 (2010).
  • Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest 101, 1605–1609 (1992).
  • Aksamit TR. Hot tub lung: infection, inflammation, or both? Semin. Respir. Infect. 18, 33–39 (2003).
  • Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee guidelines 1999. Thorax 55, 210–218 (2000).
  • Goldman KP. Treatment of unclassified mycobacterial infection of the lungs. Thorax 23, 94–99 (1968).
  • Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest 126, 566–581 (2004).
  • Dutt AK, Stead WW. Long-term results of medical treatment in Mycobacterium intracellulare infection. Am. J. Med. 67, 449–453 (1979).
  • Dautzenberg B, Piperno D, Diot P, Truffot-Pernot C, Chauvin JP. Clarithromycin in the treatment of Mycobacterium avium lung infections in patients without AIDS. Clarithromycin Study Group of France. Chest 107, 1035–1040 (1995).
  • Griffith DE, Brown-Elliott BA, Langsjoen B et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 174, 928–934 (2006).
  • Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex: the first 50 patients. Am. J. Respir. Crit. Care Med. 153, 1766–1772 (1996).
  • Tanaka E, Kimoto T, Tsuyuguchi K et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am. J. Respir. Crit. Care Med. 160:866–872 (1999).
  • Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest 124, 1482–1486 (2003).
  • Research Committee of the British Thoracic Society. First randomised trial of treatments for pulmonary disease caused by M. avium intracellulare, M. malmoense, and M. xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax 56, 167–172 (2001).
  • Research Committee of the British Thoracic Society. Clarithromycin vs ciprofloxacin as adjuncts to rifampicin and ethambutol in treating opportunist mycobacterial lung diseases and an assessment of Mycobacterium vaccae immunotherapy. Thorax 63, 627–634 (2008).
  • Roussel G, Igual J. Clarithromycin with minocycline and clofazimine for Mycobacterium avium intracellulare complex lung disease in patients without the acquired immune deficiency syndrome. GETIM. Groupe d'Etude et de Traitement des Infections à Mycobactéries. Int. J. Tuberc. Lung Dis. 2, 462–470 (1998).
  • Kobashi Y, Matsushima T. The effect of combined therapy according to the guidelines for the treatment of Mycobacterium avium complex pulmonary disease. Intern. Med. 42, 670–675 (2003).
  • Kobashi Y, Matsushima T, Oka M. A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir. Med. 101, 130–138 (2007).
  • Kobashi Y, Abe M, Mouri K, Obase Y, Kato S, Oka M. Relationship between clinical efficacy for pulmonary MAC and drug-sensitivity test for isolated MAC in a recent 6-year period. J. Infect. Chemother. 18, 436–443 (2012).
  • Murray MP, Laurenson IF, Hill AT. Outcomes of a standardized triple-drug regimen for the treatment of nontuberculous mycobacterial pulmonary infection. Clin. Infect. Dis. 47, 222–224 (2008).
  • Huang JH, Kao PN, Adi V, Ruoss SJ. Mycobacterium avium-intracellulare pulmonary infection in HIV-negative patients without preexisting lung disease: diagnostic and management limitations. Chest 115, 1033–1040 (1999).
  • Lam PK, Griffith DE, Aksamit TR et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 173, 1283–1289 (2006).
  • Koh WJ, Hong G, Kim SY et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob. Agents Chemother. 57, 2281–2285 (2013).
  • van Ingen J, Griffith DE, Aksamit TR, Wagner D. Pulmonary diseases caused by non-tuberculous mycobacteria. Eur. Respir. Soc. Monograph 58 ( Tuberculosis), 25–37 (2012).
  • Griffith DE, Brown BA, Murphy DT, Girard WM, Couch L, Wallace RJ Jr. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium avium complex lung disease in human immunodeficiency virus-negative patients. J. Infect. Dis. 178, 121–126 (1998).
  • Griffith DE, Brown BA, Cegielski P, Murphy DT, Wallace RJ Jr. Early results (at 6 months) with intermittent clarithromycin-including regimens for lung disease due to Mycobacterium avium complex. Clin. Infect. Dis. 30, 288–292 (2000).
  • Ahn CH, Lowell JR, Ahn SS, Ahn SI, Hurst GA. Short-course chemotherapy for pulmonary disease caused by Mycobacterium kansasii. Am. Rev. Respir. Dis. 128, 1048–1050 (1983).
  • Santin M, Dorca J, Alcaide F et al. Long-term relapses after 12-month treatment for Mycobacterium kansasii lung disease. Eur. Respir. J. 33, 148–152 (2009).
  • Research Committee of the British Thoracic Society. Mycobacterium kansasii pulmonary infection: a prospective study of the results of nine months of treatment with rifampicin and ethambutol. Thorax 49, 442–445 (1994).
  • Shitrit D, Baum GL, Priess R et al. Pulmonary Mycobacterium kansasii infection in Israel, 1999–2004: clinical features, drug susceptibility, and outcome. Chest 129, 771–776 (2006).
  • Griffith DE, Brown-Elliott BA, Wallace RJ Jr. Thrice-weekly clarithromycin-containing regimen for treatment of Mycobacterium kansasii lung disease: results of a preliminary study. Clin. Infect. Dis. 37, 1178–1182 (2003).
  • Ahn CH, Wallace RJ Jr, Steele LC, Murphy DT. Sulfonamide-containing regimens for disease caused by rifampin-resistant Mycobacterium kansasii. Am. Rev. Respir. Dis. 135, 10–16 (1987).
  • Wallace RJ Jr, Dunbar D, Brown BA et al. Rifampin-resistant Mycobacterium kansasii. Clin. Infect. Dis. 18, 736–743 (1994).
  • Hoefsloot W, van Ingen J, de Lange WCM, Dekhuijzen PNR, Boeree MJ, van Soolingen D. Clinical relevance of Mycobacterium malmoense isolation in the Netherlands. Eur. Respir. J. 34, 926–931 (2009).
  • Andréjak C, Lescure FX, Pukenyte E et al. Mycobacterium xenopi pulmonary infections: a multicentric retrospective study of 136 cases in north-east France. Thorax 64, 291–296 (2009).
  • van Ingen J, Boeree MJ, de Lange WCM et al. Mycobacterium xenopi clinical relevance and determinants, the Netherlands. Emerg. Infect. Dis. 14, 385–389 (2008).
  • Varadi RG, Marras TK. Pulmonary Mycobacterium xenopi infection in non-HIV-infected patients: a systematic review. Int. J. Tuberc. Lung Dis. 13, 1210–1218 (2009).
  • van Ingen J, Totten SE, Heifets LB, Boeree MJ, Daley CL. Drug susceptibility testing and pharmacokinetics question current treatment regimens in Mycobacterium simiae complex disease. Int. J. Antimicrob. Agents 39, 173–176 (2012).
  • van Ingen J, Boeree M, van Soolingen D, Mouton J. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat. 15, 149–161 (2012).
  • Hill UG, Floto RA, Haworth CS. Non-tuberculous mycobacteria in cystic fibrosis. J. R. Soc. Med. 105( Suppl. 2), S14–S18 (2012).
  • Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin. Infect. Dis. 52, 565–571 (2011).
  • Huang YC, Liu MF, Shen GH et al. Clinical outcome of Mycobacterium abscessus infection and antimicrobial susceptibility testing. J. Microbiol. Immunol. Infect. 43, 401–406 (2010).
  • Lyu J, Jang HJ, Song JW et al. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir. Med. 105, 781–787 (2011).
  • Jeon K, Kwon OJ, Lee NY et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. 180, 896–902 (2009).
  • Koh WJ, Jeon K, Lee NY et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 183, 405–410 (2011).
  • Harada T, Akiyama Y, Kurashima A et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J. Clin. Microbiol. 50, 3556–3561 (2012).
  • Leao SC, Tortoli E, Euzéby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int. J. Syst. Evol. Microbiol. 61, 2311–2313 (2011).
  • Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 53, 1367–1376 (2009).
  • Griffith DE, Girard WM, Wallace RJ Jr. Clinical features of pulmonary disease caused by rapidly growing mycobacteria: an analysis of 154 patients. Am. Rev. Respir. Dis. 147, 1271 (1993).
  • Yew WW, Kwan SY, Wong PC, Lee J. Ofloxacin and imipenem in the treatment of Mycobacterium fortuitum and Mycobacterium chelonae lung infections. Tubercle 71, 131–133 (1990).
  • Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 15, 716–746 (2002).
  • DeGroote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin. Infect. Dis. 42, 1756–1763 (2006).
  • van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow growing nontuberculous mycobacteria is currently of questionable clinical significance. Int. J. Antimicrob. Agents 42, 80–82 (2013;.
  • Hoffner SE, Heurlin N, Petrini B, Svenson SB, Kallenius G. Mycobacterium avium complex develop resistance to synergistically active drug combinations during infection. Eur. Respir. J. 7, 247–250 (1994).
  • Clinical Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes - Approved Standard, Second Edition. 2011. Clinical Standards Institute. CLSI document M24-A2. Wayne, PA.
  • Deshpande D, Gumbo T. Pharmacokinetic/pharmacodynamic-based treatment of disseminated Mycobacterium avium. Future Microbiol. 6, 433–439 (2011).
  • van Ingen J, Egelund EF, Levin A et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am. J. Respir. Crit. Care Med. 186, 559–565 (2012).
  • Bastian S, Veziris N, Roux AL et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 55, 775–781 (2011).
  • Koh WJ, Jeong BH, Jeon K, Lee SY, Shin SJ. Therapeutic drug monitoring in the treatment of Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 186, 797–802 (2012).
  • Magis-Escurra C, Alffenaar JW, Hoefnagels I et al. Pharmacokinetic studies in patients with nontuberculous mycobacterial lung infections. Int. J. Antimicrob. Agents doi:pii: S0924-8579(13)00193-3.10.1016/j.ijantimicag.2013.05.007 (2013) ( Epub ahead of print).
  • Wallace RJ Jr, Brown BA, Griffith DE, Girard W, Tanaka K. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J. Infect. Dis. 171, 747–750 (1995).
  • Chaisson RE, Benson CA, Dube MP et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. A randomized, double-blind, dose-ranging study in patients with AIDS. AIDS Clinical Trials Group Protocol 157 Study Team. Ann. Intern. Med. 121, 905–911 (1994).
  • Wallace RJ Jr, Brown BA, Griffith DE. Drug intolerance to high-dose clarithromycin among elderly patients. Diagn. Microbiol. Infect. Dis. 16, 215–221 (1993).
  • Griffith DE, Brown BA, Wallace RJ Jr. Varying dosages of rifabutin affect white blood cell and platelet counts in human immunodeficiency virus-negative patients who are receiving multidrug regimens for pulmonary Mycobacterium avium complex disease. Clin. Infect. Dis. 23, 1321–1322 (1996).
  • Griffith DE, Brown BA, Girard WM, Wallace RJ Jr. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium avium complex lung disease. Clin. Infect. Dis. 21, 594–598 (1995).
  • Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob. Agents Chemother. 54, 1484–1491 (2010).
  • Deshpande D, Srivastava S, Meek C, Leff R, Gumbo T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic- pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 54, 1728–1733 (2010).
  • Deshpande D, Srivastava S, Meek C, Leff R, Hall GS, Gumbo T. Moxifloxacin pharmacokinetics/pharmacodynamics and optimal dose and susceptibility breakpoint identification for treatment of disseminated Mycobacterium avium infection. Antimicrob. Agents Chemother. 54, 2534–2539 (2010).
  • Davis KK, Kao PN, Jacobs SS, Ruoss SJ. Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series. BMC Pulm. Med. 7, 2 (2007).
  • Colin AA, Ali-Dinar T. Aerosolized amikacin and oral clarithromycin to eradicate Mycobacterium abscessus in a patient with cystic fibrosis: an 8-year follow-up. Pediatr. Pulmonol. 45, 626–627 (2010).
  • Safdar A. Aerosolized amikacin in patients with difficult-to-treat pulmonary nontuberculous mycobacteriosis. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1883–1887 (2012).
  • Chatte G, Panteix G, Perrin-Fayolle M, Pacheco Y. Aerosolized interferon gamma for Mycobacterium avium-complex lung disease. Am. J. Respir. Crit. Care Med. 152, 1094–1096 (1995).
  • Hallstrand TS, Ochs HD, Zhu Q, Liles WC. Inhaled IFN-gamma for persistent nontuberculous mycobacterial pulmonary disease due to functional IFN-gamma deficiency. Eur. Respir. J. 24, 367–370 (2004).
  • Shen GH, Wu BD, Hu ST, Lin CF, Wu KM, Chen JH. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int. J. Antimicrob. Agents 35, 400–404 (2010).
  • van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in nontuberculous mycobacterial disease. Antimicrob. Agents Chemother. 56, 6324–6327 (2012).
  • Saito H, Sato K. Activity of rifabutin alone and in combination with clofazimine, kanamycin and ethambutol against Mycobacterium intracellulare infections in mice. Tubercle 70, 201–205 (1989).
  • 80 Andries, K, Verhasselt, P, Guillemont, J et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).
  • Lounis N, Gevers T, Van den Berg J, Vranckx L, Andries K. ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob. Agents Chemother. 53, 4927–4929 (2009).
  • van Ingen J, van der Laan T, Amaral L, Dekhuijzen R, Boeree MJ, van Soolingen D. In vitro activity of thioridazine against mycobacteria. Int. J. Antimicrob. Agents 34, 190–191 (2009).
  • Rodrigues L, Aínsa JA, Amaral L, Viveiros M. Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat. Antiinfect. Drug Discov. 6, 118–127 (2011).
  • Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am. Rev. Respir. Dis. 119, 107–159 (1979).
  • Diacon AH, Maritz JS, Venter A, van Helden PD, Dawson R, Donald PR. Time to liquid culture positivity can substitute for colony counting on agar plates in early bactericidal activity studies of antituberculosis agents. Clin. Microbiol. Infect. 18, 711–717 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.