304
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses

, , , &
Pages 1097-1113 | Published online: 10 Jan 2014

References

  • Al-Mobeeriek A, AlDosari AM. Prevalence of oral lesions among Saudi dental patients. Ann. Saudi Med. 29(5), 365–368 (2009).
  • Locker D. Prevalence and causes of oral injuries in a population of Canadian adults aged 18 to 50 years–a brief communication. J. Public Health Dent. 66(2), 144–146 (2006).
  • Mathew AL, Pai KM, Sholapurkar AA, Vengal M. The prevalence of oral mucosal lesions in patients visiting a dental school in Southern India. Indian J. Dent. Res. 19(2), 99–103 (2008).
  • Espinoza I, Rojas R, Aranda W, Gamonal J. Prevalence of oral mucosal lesions in elderly people in Santiago, Chile. J. Oral Pathol. Med. 32(10), 571–575 (2003).
  • Kovac-Kovacic M, Skaleric U. The prevalence of oral mucosal lesions in a population in Ljubljana, Slovenia. J. Oral Pathol. Med. 29(7), 331–335 (2000).
  • Reichart PA. Oral mucosal lesions in a representative cross-sectional study of aging Germans. Community Dent. Oral Epidemiol. 28(5), 390–398 (2000).
  • Shulman JD, Beach MM, Rivera-Hidalgo F. The prevalence of oral mucosal lesions in U.S. adults: data from the Third National Health and Nutrition Examination Survey, 1988–1994. J. Am. Dent. Assoc. 135(9), 1279–1286 (2004).
  • Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. J. Dent. Res. 91(10), 914–920 (2012).
  • Mays JW, Sarmadi M, Moutsopoulos NM. Oral manifestations of systemic autoimmune and inflammatory diseases: diagnosis and clinical management. JEBDP 12( Suppl. 3), 265–282 (2012).
  • Semple F, Dorin JR. beta-Defensins: Multifunctional Modulators of Infection, Inflammation and More? J. Innate Immun. 4(4), 337–348 (2012).
  • Frasca L, Lande R. Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr. Pharm. Biotechnol. 13(10), 1882–1897 (2012).
  • Harvey LE, Kohlgraf KG, Mehalick LA et al. Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus. Sci. Rep. 3, 1232 (2013).
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3(3), 238–250 (2005).
  • Yang D, Oppenheim JJ. Multiple functions of antimicrobial peptides in host immunity. In: Mammalian Host Defense Peptides. Devine, DA, Hancock, REW ( Eds.). Cambridge University Press, Cambridge, 39–68 (2004).
  • Biragyn A. Defensins–non-antibiotic use for vaccine development. Curr. Protein Pept. Sci. 6(1), 53–60 (2005).
  • Rehaume LM, Hancock RE. Neutrophil-derived defensins as modulators of innate immune function. Crit. Rev. Immunol. 28(3), 185–200 (2008).
  • Presicce P, Giannelli S, Taddeo A, Villa ML, Della Bella S. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J. Leukoc. Biol. 86(4), 941–948 (2009).
  • Jin G, Kawsar HI, Hirsch SA et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS ONE 5(6), e10993 (2010).
  • Diamond G, Ryan L. Beta-defensins: what are they REALLY doing in the oral cavity? Oral Dis. 17(7), 628–635 (2011).
  • Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12(7), 503–516 (2012).
  • Dale BA, Kimball JR, Krisanaprakornkit S et al. Localized antimicrobial peptide expression in human gingiva. J. Periodontal Res. 36(5), 285–294 (2001).
  • Dunsche A, Acil Y, Siebert R, Harder J, Schroder JM, Jepsen S. Expression profile of human defensins and antimicrobial proteins in oral tissues. J. Oral Pathol. Med. 30(3), 154–158 (2001).
  • Dunsche A, Acil Y, Dommisch H, Siebert R, Schroder JM, Jepsen S. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur. J. Oral Sci. 110(2), 121–124 (2002).
  • Lundy FT, Orr DF, Shaw C, Lamey PJ, Linden GJ. Detection of individual human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3) in unfractionated gingival crevicular fluid–a MALDI-MS approach. Mol. Immunol. 42(5), 575–579 (2005).
  • Dommisch H, Winter J, Acil Y, Dunsche A, Tiemann M, Jepsen S. Human beta-defensin (hBD-1, -2) expression in dental pulp. Oral Microbiol. Immunol. 20(3), 163–166 (2005).
  • Lu Q, Samaranayake LP, Darveau RP, Jin L. Expression of human beta-defensin-3 in gingival epithelia. J. Periodontal Res. 40(6), 474–481 (2005).
  • Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ. Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch. Oral Biol. 54(4), 345–353 (2009).
  • Gorr SU. Antimicrobial peptides of the oral cavity. Periodontol. 2000 51, 152–180 (2009).
  • Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J. Clin. Periodontol. 38( Suppl. 38), 126–141 (2011).
  • Putsep K, Carlsson G, Boman H, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360(9340), 1144–1149 (2002).
  • Van Dyke TE, Taubman MA, Ebersole JL et al. The Papillon–Lefèvre syndrome: neutrophil dysfunction with severe periodontal disease. Clin. Immunol. Immunopathol. 31(3), 419–429 (1984).
  • Hart TC, Hart PS, Michalec MD et al. Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation. J. Med. Genet. 37(2), 95–101 (2000).
  • Hart TC, Hart PS, Michalec MD et al. Haim-Munk syndrome and Papillon–Lefèvre syndrome are allelic mutations in cathepsin C. J. Med. Genet. 37(2), 88–94 (2000).
  • Groenink J, Walgreen-Weterings E, Nazmi K et al. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J. Clin. Periodontol. 26(5), 269–275 (1999).
  • Tanida T, Okamoto T, Okamoto A et al. Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J. Oral Pathol. Med. 32(10), 586–594 (2003).
  • Khan A. Detection and quantitation of forty eight cytokines, chemokines, growth factors and nine acute phase proteins in healthy human plasma, saliva and urine. J. Proteomics 75(15), 4802–4819 (2012).
  • Tymkiw KD, Thunell DH, Johnson GK et al. Influence of smoking on gingival crevicular fluid cytokines in severe chronic periodontitis. J. Clin. Periodontol. 38(3), 219–228 (2011).
  • Banks K, Merlino PG. Minor oral injuries in children. Mt. Sinai J. Med. 65(5–6), 333–342 (1998).
  • Matsusue Y, Yamamoto K, Horita S, Inagake K, Kirita T. Impalement injuries of the oral cavity in children. J. Oral Maxillofac. Surg. 69(6), e147–e151 (2011).
  • Schonwetter BS, Stolzenberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation. Science 267, 1645–1648 (1995).
  • Dressel S, Harder J, Cordes J et al. Differential expression of antimicrobial peptides in margins of chronic wounds. Exp. Dermatol. 19(7), 628–632 (2010).
  • Lippross S, Klueter T, Steubesand N et al. Multiple trauma induces serum production of host defence peptides. Injury 43, 137–142 (2012).
  • Chen L, Arbieva ZH, Guo S, Marucha PT, Mustoe TA, DiPietro LA. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 11, 471 (2010).
  • Marucha P, Daugherty C, Lee S. Examination stress alters the expression of cytokines and chemokines during oral wound healing. In: IADR/AADR/CADR 80th General Session. ( Eds) (San Diego Convention Center, San Diego, California (2002).
  • Szpaderska AM, Walsh CG, Steinberg MJ, Dipietro LA. Distinct patterns of angiogenesis in oral and skin wounds. J. Dent. Res. 84(4), 309–314 (2005).
  • Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J. Dent. Res. 82(8), 621–626 (2003).
  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101(16), 6176–6181 (2004).
  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43(11), 5721–5732 (2005).
  • Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA 96(25), 14547–14552 (1999).
  • Tanner AC, Paster BJ, Lu SC et al. Subgingival and tongue microbiota during early periodontitis. J. Dent. Res. 85(4), 318–323 (2006).
  • Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 366(9499), 1809–1820 (2005).
  • Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontol. 2000 14, 12–32 (1997).
  • Slots J. Microflora in the healthy gingival sulcus in man. Scand. J. Dent. Res. 85(4), 247–254 (1977).
  • Newman MG, Grinenco V, Weiner M, Angel I, Karge H, Nisengard R. Predominant microbiota associated with periodontal health in the aged. J. Periodontol. 49(11), 553–559 (1978).
  • Tanner A, Kent R, Maiden MF, Taubman MA. Clinical, microbiological and immunological profile of healthy, gingivitis and putative active periodontal subjects. J. Periodontal Res. 31(3), 195–204 (1996).
  • Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63( Suppl. 4), 322–331 (1992).
  • Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25(2), 134–144 (1998).
  • Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8(7), 471–480 (2010).
  • Tao R, Jurevic RJ, Coulton KK et al. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob. Agents Chemother. 49(9), 3883–3888 (2005).
  • Dale BA, Tao R, Kimball JR, Jurevic RJ. Oral antimicrobial peptides and biological control of caries. BMC Oral Health 6, S13 (2006).
  • Gorr SU. Antimicrobial peptides in periodontal innate defense. Front. Oral Biol. 15, 84–98 (2012).
  • Dommisch H, Acil Y, Dunsche A, Winter J, Jepsen S. Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol. Immunol. 20(3), 186–190 (2005).
  • Javed F, Al-Hezaimi K, Salameh Z, Almas K, Romanos GE. Proinflammatory cytokines in the crevicular fluid of patients with peri-implantitis. Cytokine 53(1), 8–12 (2011).
  • Thunell DH, Tymkiw KD, Johnson GK et al. A multiplex immunoassay demonstrates reductions in gingival crevicular fluid cytokines following initial periodontal therapy. J. Periodontal Res. 45(1), 148–152 (2010).
  • Gornowicz A, Bielawska A, Bielawski K et al. Pro-inflammatory cytokines in saliva of adolescents with dental caries disease. Ann. Agric. Environ. Med. 19(4), 711–716 (2012).
  • Kucukkolbasi H, Kucukkolbasi S, Dursun R, Ayyildiz F, Kara H. Determination of defensin HNP-1 in human saliva of patients with oral mucosal diseases. J. Immunoassay Immunochem. 32(4), 284–295 (2011).
  • Borra RC, de Mesquita Barros F, de Andra de Lotufo M, Villanova FE, Andrade PM. Toll-like receptor activity in recurrent aphthous ulceration. J. Oral Pathol. Med. 38(3), 289–298 (2009).
  • Lewkowicz N, Kur B, Kurnatowska A, Tchorzewski H, Lewkowicz P. Expression of Th1/Th2/Th3/Th17-related genes in recurrent aphthous ulcers. Arch. Immunol. Ther. Exp. (Warsz.) 59(5), 399–406 (2011).
  • Gallo CB, Borra RC, Rodini CO, Nunes FD, Sugaya NN. CC chemokine ligand 3 and receptors 1 and 5 gene expression in recurrent aphthous stomatitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114(1), 93–98 (2012).
  • Dalghous AM, Freysdottir J, Fortune F. Expression of cytokines, chemokines, and chemokine receptors in oral ulcers of patients with Behçet’s disease (BD) and recurrent aphthous stomatitis is Th1-associated, although Th2-association is also observed in patients with BD. Scand. J. Rheumatol. 35(6), 472–475 (2006).
  • Boras VV, Lukac J, Brailo V, Picek P, Kordic D, Zilic IA. Salivary interleukin-6 and tumor necrosis factor-alpha in patients with recurrent aphthous ulceration. J. Oral Pathol. Med. 35(4), 241–243 (2006).
  • Brozovic S, Vucicevic-Boras V, Mravak-Stipetic M, Jukic S, Kleinheinz J, Lukac J. Salivary levels of vascular endothelial growth factor (VEGF) in recurrent aphthous ulceration. J. Oral Pathol. Med. 31(2), 106–108 (2002).
  • Pekiner FN, Aytugar E, Demirel GY, Borahan MO. Interleukin-2, interleukin-6 and T regulatory cells in peripheral blood of patients with Behçet’s disease and recurrent aphthous ulcerations. J. Oral Pathol. Med. 41(1), 73–79 (2012).
  • Aridogan BC, Yildirim M, Baysal V, Inaloz HS, Baz K, Kaya S. Serum Levels of IL-4, IL-10, IL-12, IL-13 and IFN-gamma in Behçet’s disease. J. Dermatol. 30(8), 602–607 (2003).
  • Abiko Y, Jinbu Y, Noguchi T et al. Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis. an immunohistochemical study. Pathol. Res. Pract. 198(8), 537–542 (2002).
  • Nishimura M, Abiko Y, Kusano K et al. Localization of human beta-defensin 3 mRNA in normal oral epithelium, leukoplakia, and lichen planus: an in situ hybridization study. Med. Electron Microsc. 36(2), 94–97 (2003).
  • Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T. Defensin-1, an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis. 5(2), 139–142 (1999).
  • Sugerman PB, Savage NW, Walsh LJ et al. The pathogenesis of oral lichen planus. Crit. Rev. Oral Biol. Med. 13(4), 350–365 (2002).
  • Wenzel J, Scheler M, Proelss J, Bieber T, Tuting T. Type I interferon-associated cytotoxic inflammation in lichen planus. J. Cutan. Pathol. 33(10), 672–678 (2006).
  • Piccinni MP, Lombardelli L, Logiodice F et al. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus. Oral Dis. doi: 10.1111/odi.12094 (2013) ( Epub ahead of print).
  • Flier J, Boorsma DM, van Beek PJ et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194(4), 398–405 (2001).
  • Spandau U, Toksoy A, Goebeler M, Brocker EB, Gillitzer R. MIG is a dominant lymphocyte-attractant chemokine in lichen planus lesions. J. Invest. Dermatol. 111(6), 1003–1009 (1998).
  • Ertugrul AS, Dursun R, Dundar N, Avunduk MC, Hakki SS. MMP-1, MMP-9, and TIMP-1 levels in oral lichen planus patients with gingivitis or periodontitis. Arch. Oral Biol. 58(7), 843–852 (2013).
  • Pekiner FN, Demirel GY, Borahan MO, Ozbayrak S. Cytokine profiles in serum of patients with oral lichen planus. Cytokine 60(3), 701–706 (2012).
  • Ding M, Zeng J, Sroussi H et al. Interactions between Golli-MBP and Th1/Th2 cytokines in patients with oral lichen planus. Oral Dis. doi: 10.1111/odi.12090 (2013) ( Epub ahead of print).
  • Taghavi Zenouz A, Pouralibaba F, Babaloo Z, Mehdipour M, Jamali Z. Evaluation of serum TNF-alpha and TGF-beta in patients with oral lichen planus. J. Dent. Res. Dent. Clin. Dent. Prospects 6(4), 143–147 (2012).
  • Rhodus NL, Cheng B, Bowles W, Myers S, Miller L, Ondrey F. Proinflammatory cytokine levels in saliva before and after treatment of (erosive) oral lichen planus with dexamethasone. Oral Dis. 12(2), 112–116 (2006).
  • Liu W, Dan H, Wang Z et al. IFN-gamma and IL-4 in saliva of patients with oral lichen planus: a study in an ethnic Chinese population. Inflammation 32(3), 176–181 (2009).
  • Scully C, Lo Muzio L. Oral mucosal diseases: mucous membrane pemphigoid. Br. J. Oral Maxillofac. Surg. 46(5), 358–366 (2008).
  • Caproni M, Calzolari A, Salvatore E et al. Cytokine profile and supposed contribution to scarring in cicatricial pemphigoid. J. Oral Pathol. Med. 32(1), 34–40 (2003).
  • Gounni Abdelilah S, Wellemans V, Agouli M et al. Increased expression of Th2-associated chemokines in bullous pemphigoid disease. Role of eosinophils in the production and release of these chemokines. Clin. Immunol. 120(2), 220–231 (2006).
  • Messingham KN, Srikantha R, DeGueme AM, Fairley JA. FcR-independent effects of IgE and IgG autoantibodies in bullous pemphigoid. J. Immunol. 187(1), 553–560 (2011).
  • Schmidt E, Reimer S, Kruse N, Brocker EB, Zillikens D. The IL-8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone. Clin. Exp. Immunol. 124(1), 157–162 (2001).
  • Schmidt E, Reimer S, Kruse N et al. Autoantibodies to BP180 associated with bullous pemphigoid release interleukin-6 and interleukin-8 from cultured human keratinocytes. J. Invest. Dermatol. 115(5), 842–848 (2000).
  • Rhodus N, Dahmer L, Lindemann K, Rudney J, Mathur A, Bereuter J. s-IgA and cytokine levels in whole saliva of Sjogren's syndrome patients before and after oral pilocarpine hydrochloride administration: a pilot study. Clin. Oral Investig. 2(4), 191–196 (1998).
  • Kaneda Y, Yamaai T, Mizukawa N et al. Localization of antimicrobial peptides human beta-defensins in minor salivary glands with Sjogren's syndrome. Eur. J. Oral Sci. 117(5), 506–510 (2009).
  • Hjelmervik TO, Jonsson R, Bolstad AI. The minor salivary gland proteome in Sjogren's syndrome. Oral Dis. 15(5), 342–353 (2009).
  • Streckfus C, Bigler L, Navazesh M, Al-Hashimi I. Cytokine concentrations in stimulated whole saliva among patients with primary Sjogren's syndrome, secondary Sjogren's syndrome, and patients with primary Sjogren's syndrome receiving varying doses of interferon for symptomatic treatment of the condition: a preliminary study. Clin. Oral Investig. 5(2), 133–135 (2001).
  • Bertorello R, Cordone MP, Contini P et al. Increased levels of interleukin-10 in saliva of Sjogren's syndrome patients. Correlation with disease activity. Clin. Exp. Med. 4(3), 148–151 (2004).
  • Suh KI, Kim YK, Kho HS. Salivary levels of IL-1beta, IL-6, IL-8, and TNF-alpha in patients with burning mouth syndrome. Arch. Oral Biol. 54(9), 797–802 (2009).
  • Pekiner FN, Gumru B, Demirel GY, Ozbayrak S. Burning mouth syndrome and saliva: detection of salivary trace elements and cytokines. J. Oral Pathol. Med. 38(3), 269–275 (2009).
  • Simcic D, Pezelj-Ribaric S, Grzic R, Horvat J, Brumini G, Muhvic-Urek M. Detection of salivary interleukin 2 and interleukin 6 in patients with burning mouth syndrome. Mediators Inflamm. 2006(1), 54632 (2006).
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 140(6), 883–899 (2010).
  • Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L, Bucci E. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence? Oral Oncol. 40(2), 120–130 (2004).
  • Abiko Y, Mitamura J, Nishimura M et al. Pattern of expression of beta-defensins in oral squamous cell carcinoma. Cancer Lett. 143(1), 37–43 (1999).
  • Yoshimoto T, Yamaai T, Mizukawa N et al. Different expression patterns of beta-defensins in human squamous cell carcinomas. Anticancer Res. 23(6C), 4629–4633 (2003).
  • Kesting MR, Loeffelbein DJ, Hasler RJ et al. Expression profile of human beta-defensin 3 in oral squamous cell carcinoma. Cancer Invest. 27(5), 575–581 (2009).
  • Mburu YK, Abe K, Ferris LK, Sarkar SN, Ferris RL. Human beta-defensin 3 promotes NF-kappaB-mediated CCR7 expression and anti-apoptotic signals in squamous cell carcinoma of the head and neck. Carcinogenesis 32(2), 168–174 (2010).
  • Mizukawa N, Sugiyama K, Fukunaga J et al. Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Res. 18(6B), 4645–4649 (1998).
  • Kesting MR, Sudhoff H, Hasler RJ et al. Psoriasin (S100A7) up-regulation in oral squamous cell carcinoma and its relation to clinicopathologic features. Oral Oncol. 45(8), 731–736 (2009).
  • Juretic M, Cerovic R, Belusic-Gobic M et al. Salivary levels of TNF-alpha and IL-6 in patients with oral premalignant and malignant lesions. Folia Biol. (Praha.) 59(2), 99–102 (2013).
  • Katakura A, Kamiyama I, Takano N et al. Comparison of salivary cytokine levels in oral cancer patients and healthy subjects. Bull. Tokyo Dent. Coll. 48(4), 199–203 (2007).
  • SahebJamee M, Eslami M, AtarbashiMoghadam F, Sarafnejad A. Salivary concentration of TNFalpha, IL1 alpha, IL6, and IL8 in oral squamous cell carcinoma. Med. Oral Patol. Cir. Bucal 13(5), E292–295 (2008).
  • Michiels K, Schutyser E, Conings R et al. Carcinoma cell-derived chemokines and their presence in oral fluid. Eur. J. Oral Sci. 117(4), 362–368 (2009).
  • Citrin DE, Hitchcock YJ, Chung EJ et al. Determination of cytokine protein levels in oral secretions in patients undergoing radiotherapy for head and neck malignancies. Radiat. Oncol. Investig. 7, 64 (2012).
  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169(7), 3883–3891 (2002).
  • Niyonsaba F, Ushio H, Nakano N et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127(3), 594–604 (2007).
  • Caccavo D, Pellegrino NM, Altamura M et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J. Endotoxin Res. 8(6), 403–417 (2002).
  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI. Retrocyclin, an antiretroviral theta-defensin, is a lectin. J. Immunol. 170(9), 4708–4716 (2003).
  • Owen SM, Rudolph D, Wang W et al. A theta-defensin composed exclusively of D-amino acids is active against HIV-1. J. Pept. Res. 63(6), 469–476 (2004).
  • Owen SM, Rudolph DL, Wang W et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses 20(11), 1157–1165 (2004).
  • Wang W, Mulakala C, Ward SC et al. Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J. Biol. Chem. 281(43), 32755–32764 (2006).
  • Liu H, Yu H, Gu Y et al. Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl. Microbiol. Biotechnol. 97(8), 3395–3408 (2013).
  • Yu H, Dong J, Gu Y et al. The novel human beta-defensin 114 regulates lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss. J. Biol. Chem. 288(17), 12270–12282 (2013).
  • Dietrich DE, Xiao X, Dawson DV et al. Human alpha- and beta-defensins bind to immobilized adhesins from porphyromonas gingivalis. Infect. Immun. 76(12), 5714–5720 (2008).
  • Pingel LC, Kohlgraf KG, Hansen CJ et al. Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol. Cell Biol. 86(8), 643–649 (2008).
  • Gough M, Hancock REW, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect. Immun. 64(12), 4922–4927 (1996).
  • Bowdish DM, Hancock RE. Anti-endotoxin properties of cationic host defence peptides and proteins. J. Endotoxin Res. 11(4), 230–236 (2005).
  • Motzkus D, Schulz-Maronde S, Heitland A et al. The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J. 20(10), 1701–1702 (2006).
  • Scott A, Weldon S, Buchanan PJ et al. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS ONE 6(10), 26525 (2011).
  • Kim C, Gajendran N, Mittrucker HW et al. Human {alpha}-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc. Natl Acad. Sci. USA 102(13), 4830–4835 (2005).
  • Kim C, Slavinskaya Z, Merrill AR, Kaufmann SH. Human alpha-defensins neutralize toxins of the mono-ADP-ribosyltransferase family. Biochem. J. 399(2), 225–229 (2006).
  • Giesemann T, Guttenberg G, Aktories K. Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology 134(7), 2049–2058 (2008).
  • Yeom M, Park J, Lee B et al. Lactoferrin inhibits the inflammatory and angiogenic activation of bovine aortic endothelial cells. Inflamm. Res. 60(5), 475–482 (2011).
  • Molhoek EM, den Hertog AL, de Vries AM et al. Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol. Chem. 390(4), 295–303 (2009).
  • Groot F, Geijtenbeek TB, Sanders RW et al. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN–gp120 interaction. J. Virol. 79(5), 3009–3015 (2005).
  • Van Hemert JR, Recker EN, Dietrich D et al. Human beta-defensin-3 alters, but does not inhibit, the binding of porphyromonas gingivalis haemagglutinin B to the surface of human dendritic cells. Int. J. Antimicrob. Agents 40(1), 75–79 (2012).
  • Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int. J. Antimicrob. Agents 35(2), 138–145 (2010).
  • Inomata M, Into T, Murakami Y. Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur. J. Oral Sci. 118(6), 574–581 (2010).
  • Walters SM, Dubey VS, Jeffrey NR, Dixon DR. Antibiotic-induced porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 31(9), 1649–1653 (2010).
  • Murakami S, Iwaki D, Mitsuzawa H et al. Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J. Biol. Chem. 277(9), 6830–6837 (2002).
  • Yamazoe M, Nishitani C, Takahashi M et al. Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)-induced inflammatory cell responses by altering LPS binding to its receptors. J. Biol. Chem. 283(51), 35878–35888 (2008).
  • Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J. Periodontol. 84(2), 256–264 (2013).
  • Brown KL, Poon GF, Birkenhead D et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol. 186(9), 5497–5505 (2011).
  • Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J. Immunol. 165(6), 3358–3365 (2000).
  • Shi J, Aono S, Lu W et al. A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J. Immunol. 179(2), 1245–1253 (2007).
  • Miles K, Clarke DJ, Lu W et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J. Immunol. 183(3), 2122–2132 (2009).
  • Schaal JB, Tran D, Tran P et al. Rhesus macaque theta defensins suppress inflammatory cytokines and enhance survival in mouse models of bacteremic sepsis. PLoS ONE 7(12), e51337 (2012).
  • Imatani T, Kato T, Minaguchi K, Okuda K. Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by porphyromonas gingivalis. Oral Microbiol. Immunol. 15(6), 378–382 (2000).
  • Barabas N, Rohrl J, Holler E, Hehlgans T. Beta-defensins activate macrophages and synergize in pro-inflammatory cytokine expression induced by TLR ligands. Immunobiology 218(7), 1005–1011 (2013).
  • Awasthi S, Brown K, King C, Awasthi V, Bondugula R. A toll-like receptor-4-interacting surfactant protein-A-derived peptide suppresses tumor necrosis factor-alpha release from mouse JAWS II dendritic cells. J. Pharmacol. Exp. Ther. 336(3), 672–681 (2011).
  • Roy KR, Reddy GV, Maitreyi L et al. Celecoxib inhibits MDR1 expression through COX-2-dependent mechanism in human hepatocellular carcinoma (HepG2) cell line. Cancer Chemother. Pharmacol. 65(5), 903–911 (2010).
  • Vali S, Pallavi R, Kapoor S, Tatu U. Virtual prototyping study shows increased ATPase activity of Hsp90 to be the key determinant of cancer phenotype. Syst. Synth. Biol. 4(1), 25–33 (2010).
  • Equils O, Nambiar P, Hobel CJ, Smith R, Simmons CF, Vali S. A computer simulation of progesterone and Cox2 inhibitor treatment for preterm labor. PLoS ONE 5(1), e8502 (2010).
  • Rajendran P, Ong TH, Chen L et al. Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin. Cancer Res. 17(6), 1425–1439 (2011).
  • Sultana Z, Paleologou KE, Al-Mansoori KM et al. Dynamic modeling of alpha-synuclein aggregation in dopaminergic neuronal system indicates points of neuroprotective intervention: experimental validation with implications for Parkinson's therapy. Neuroscience 199, 303–317 (2011).
  • Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How Cytokine Networks Fuel Inflammation: Toward a cytokine-based disease taxonomy. Nat. Med. 19(7), 822–824 (2013).
  • Abbasi T, Fernandes P, Vali S, Singh G. Innovate while derisking drug development – yes we can! DDW (Summer), 9–18 (2012).
  • O' Neill ID. Off-label use of biologicals in the management of inflammatory oral mucosal disease. J. Oral Pathol. Med. 37(10), 575–581 (2008).
  • Souza JA, Rossa C, Jr., Garlet GP, Nogueira AV, Cirelli JA. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J. Appl. Oral Sci. 20(2), 128–138 (2012).
  • Liu X, Fang L, Guo TB, Mei H, Zhang JZ. Drug targets in the cytokine universe for autoimmune disease. Trends Immunol. 34(3), 120–128 (2013).
  • Formanek M, Knerer B, Kornfehl J. Cytokine expression of human oral keratinocytes. ORL J. Otorhinolaryngol. Relat. Spec. 61(2), 103–107 (1999).
  • Xu Q, Izumi K, Tobita T, Nakanishi Y, Feinberg SE. Constitutive release of cytokines by human oral keratinocytes in an organotypic culture. J. Oral Maxillofac. Surg. 67(6), 1256–1264 (2009).
  • Ohta K, Shigeishi H, Taki M et al. Regulation of CXCL9/10/11 in oral keratinocytes and fibroblasts. J. Dent. Res. 87(12), 1160–1165 (2008).
  • Kesting MR, Stoeckelhuber M, Holzle F et al. Expression of antimicrobial peptides in cutaneous infections after skin surgery. Br. J. Dermatol. 163(1), 121–127 (2010).
  • Zilbauer M, Jenke A, Wenzel G et al. Expression of human beta-defensins in children with chronic inflammatory bowel disease. PLoS ONE 5(10), e15389 (2010).
  • Miller CS, King CP, Jr., Langub MC, Kryscio RJ, Thomas MV. Salivary biomarkers of existing periodontal disease: a cross-sectional study. J. Am. Dent. Assoc. 137(3), 322–329 (2006).
  • Tobon-Arroyave SI, Jaramillo-Gonzalez PE, Isaza-Guzman DM. Correlation between salivary IL-1β levels and periodontal clinical status. Arch. Oral Biol. 53(4), 346–352 (2008).
  • Booth V, Young S, Cruchley A, Taichman NS, Paleolog E. Vascular endothelial growth factor in human periodontal disease. J. Periodontal Res. 33(8), 491–499 (1998).
  • Preliasco VF, Benchuya C, Pavan V, de la Cal C, Ganzinelli S, Sterin-Borda L. IL-1 beta and PGE2 levels are increased in the saliva of children with Langerhans cell histiocytosis. J. Oral Pathol. Med. 37(9), 522–527 (2008).
  • Kim YK, Kim SG, Kim BS et al. Analysis of the cytokine profiles of the synovial fluid in a normal temporomandibular joint: preliminary study. J. Craniomaxillofac. Surg. 40(8), e337–e341 (2012).
  • Takahashi T, Kondoh T, Fukuda M, Yamazaki Y, Toyosaki T, Suzuki R. Proinflammatory cytokines detectable in synovial fluids from patients with temporomandibular disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85(2), 135–141 (1998).
  • Mathison RD, Davison JS, Befus AD, Gingerich DA. Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein. J. Inflamm. (Lond.) 7, 49 (2010).
  • Kohlgraf KG, Ackermann A, Lu X et al. Defensins attenuate cytokine responses yet enhance antibody responses to porphyromonas gingivalis adhesins in mice. Future Microbiol. 5(1), 115–125 (2010).
  • Semple F, Macpherson H, Webb S et al. Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur. J. Immunol. 41(11), 3291–3300 (2011).
  • Semple F, Webb S, Li HN et al. Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur. J. Immunol. 40(4), 1073–1078 (2010).
  • Sugiyama K. Anti-lipopolysaccharide activity of histatins, peptides from human saliva. Experientia 49(12), 1095–1097 (1993).
  • Lu W, de Leeuw E. Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem. Biophys. Res. Commun. 436(3), 557–562 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.