775
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Bacterial meningitis: new therapeutic approaches

, , &
Pages 1079-1095 | Published online: 10 Jan 2014

References

  • van de Beek D, de Gans J, Spanjaard L et al. Clinical features and prognostic factors in adults with bacterial meningitis. N. Engl J. Med. 351(18), 1849–1859 (2004).
  • Miller LG Choi C. Meningitis in older patients: how to diagnose and treat a deadly infection. Geriatrics 52(8), 43–44, 47–50, 55 (1997).
  • Gerber J, Nau R. Mechanisms of injury in bacterial meningitis. Curr. Opin. Neurol. 23(3), 312–318 (2013).
  • van de Beek D, Brouwer MC, Thwaites GE Tunkel AR. Advances in treatment of bacterial meningitis. Lancet 380(9854), 1693–1702
  • Nau R, Bruck W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci. 25(1), 38–45 (2002).
  • Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 8(1), 4 (2011).
  • Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature 468(7321), 253–262 (2010).
  • Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev. 24(3), 557–591 (2011).
  • Scheld WM, Dacey RG, Winn HR et al. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J. Clin. Invest. 66(2), 243–253 (1980).
  • Kasanmoentalib ES, Brouwer MC, van der Ende A, van de Beek D. Hydrocephalus in adults with community-acquired bacterial meningitis. Neurology 75(10), 918–923 (2010).
  • Bodilsen J, Schonheyder HC, Nielsen HI. Hydrocephalus is a rare outcome in community-acquired bacterial meningitis in adults: a retrospective analysis. BMC Infect. Dis. 13(1), 321 (2013).
  • van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet 380(9854), 1693–1702 (2012).
  • Tsilidis KK, Panagiotou OA, Sena ES et al. Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol. 11(7), e1001609 (2013).
  • Auburtin M, Wolff M, Charpentier J et al. Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit. Care Med. 34(11), 2758–2765 (2006).
  • Koster-Rasmussen R, Korshin A, Meyer C N. Antibiotic treatment delay and outcome in acute bacterial meningitis. J. Infect. 57(6), 449–454 (2008).
  • Tureen JH, Tauber MG, Sande MA. Effect of hydration status on cerebral blood flow and cerebrospinal fluid lactic acidosis in rabbits with experimental meningitis. J. Clin. Invest. 89(3), 947–953 (1992).
  • Dellinger R P, Levy M M, Rhodes A et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2), 165–228 (2013).
  • Imohl M, Reinert RR, van der Linden M. Adult invasive pneumococcal disease between 2003 and 2006 in North-Rhine Westphalia, Germany: serotype distribution before recommendation for general pneumococcal conjugate vaccination for children <2 years of age. Clin. Microbiol. Infect. 15(11), 1008–1012 (2009).
  • Vazquez JA, Enriquez R, Abad R et al. Antibiotic resistant meningococci in Europe: any need to act? FEMS Microbiol. Rev. 31(1), 64–70 (2007).
  • Alvares J R, Mantese O C, Paula A et al. Prevalence of pneumococcal serotypes and resistance to antimicrobial agents in patients with meningitis: ten-year analysis. Braz. J. Infect. Dis. 15(1), 22–27 (2011).
  • Linares J, Ardanuy C, Pallares R, Fenoll A. Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin. Microbiol. Infect. 16(5), 402–410
  • Hsu H E, Shutt K A, Moore M R et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl J. Med. 360(3), 244–256 (2009).
  • Klugman KP, Dagan R. Randomized comparison of meropenem with cefotaxime for treatment of bacterial meningitis. Meropenem Meningitis Study Group. Antimicrob. Agents Chemother. 39(5), 1140–1146 (1995).
  • Schmutzhard E, Williams K J, Vukmirovits G et al. A randomised comparison of meropenem with cefotaxime or ceftriaxone for the treatment of bacterial meningitis in adults. Meropenem Meningitis Study Group. J. Antimicrob. Chemother. 36 ( Suppl. A), 85–97 (1995).
  • De Sarro A, Ammendola D, Zappala M, Grasso S, De Sarro GB. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob. Agents Chemother. 39(1), 232–237 (1995).
  • Kullar R, Chin JN, Edwards DJ et al. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob. Agents Chemother. 55(7), 3505–3509 (2011).
  • Cottagnoud P, Pfister M, Acosta F et al. Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob. Agents Chemother. 48(10), 3928–3933 (2004).
  • Gerber P, Stucki A, Acosta F, Cottagnoud M, Cottagnoud P. Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J. Antimicrob. Chemother. 57(4), 720–3 (2006).
  • Mook-Kanamori BB, Rouse MS, Kang C I et al. Daptomycin in experimental murine pneumococcal meningitis. BMC Infect. Dis. 9, 50 (2009).
  • Bardak-Ozcem S, Turhan T, Sipahi OR et al. Daptomycin versus vancomycin in treatment of methicillin-resistant Staphylococcus aureus meningitis in an experimental rabbit model. Antimicrob. Agents Chemother. 57(3), 1556–1558 (2013).
  • Egermann U, Stanga Z, Ramin A et al. Combination of daptomycin plus ceftriaxone is more active than vancomycin plus ceftriaxone in experimental meningitis after addition of dexamethasone. Antimicrob Agents Chemother. 53(7), 3030–3033 (2009).
  • Spanjaard L, Vandenbroucke-Grauls CM. Activity of daptomycin against Listeria monocytogenes isolates from cerebrospinal fluid. Antimicrob. Agents Chemother. 52(5), 1850–1851 (2008).
  • Knoll BM, Hellmann M, Kotton C N. Vancomycin-resistant Enterococcus faecium meningitis in adults: case series and review of the literature. Scand. J. Infect. Dis. 45(2), 131–139 (2013).
  • Vena A, Falcone M, Comandini E et al. Daptomycin plus trimethoprim/sulfamethoxazole combination therapy in post-neurosurgical meningitis caused by linezolid-resistant Staphylococcus epidermidis. Diagn. Microbiol. Infect. Dis. 76(1), 99–102 (2013).
  • Jaspan HB, Brothers AW, Campbell AJ et al. Multidrug-resistant Enterococcus faecium meningitis in a toddler: characterization of the organism and successful treatment with intraventricular daptomycin and intravenous tigecycline. Pediatr. Infect. Dis. J. 29(4), 379–381 (2010).
  • Erritouni M, Ktaich N, Rahal JJ et al. Use of daptomycin for the treatment of methicillin-resistant coagulase-negative staphylococcal ventriculitis. Case Rep. Med. 2012, 593578 (2012).
  • Mueller SW, Kiser TH, Anderson TA, Neumann RT. Intraventricular daptomycin and intravenous linezolid for the treatment of external ventricular-drain-associated ventriculitis due to vancomycin-resistant Enterococcus faecium. Ann. Pharmacother. 46(12), e35 (2012).
  • Alffenaar JW, van Altena R, Bokkerink HJ et al. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin. Infect. Dis. 49(7), 1080–1082 (2009).
  • Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 23(4), 858–883 (2010).
  • Nau R, Schmidt T, Kaye K, Froula JL, Tauber M G. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob. Agents Chemother. 39(3), 593–597 (1995).
  • Nau R, Zysk G, Schmidt H et al. Trovafloxacin delays the antibiotic-induced inflammatory response in experimental pneumococcal meningitis. J Antimicrob Chemother. 39(6), 781–788 (1997).
  • Cottagnoud P, Acosta F, Cottagnoud M, Neftel K, Tauber MG. Synergy between trovafloxacin and ceftriaxone against penicillin-resistant pneumococci in the rabbit meningitis model and in vitro. Antimicrob. Agents Chemother. 44(8), 2179–2181 (2000).
  • Djukic M, Bottcher T, Wellmer A et al. Moxifloxacin in experimental Streptococcus pneumoniae cerebritis and meningitis. Neurocrit. Care 2(3), 325–329 (2005).
  • Schmidt H, Dalhoff A, Stuertz K et al. Moxifloxacin in the therapy of experimental pneumococcal meningitis. Antimicrob. Agents Chemother. 42(6), 1397–1407 (1998).
  • Rodriguez-Cerrato V, McCoig CC, Michelow IC et al. Pharmacodynamics and bactericidal activity of moxifloxacin in experimental Escherichia coli meningitis. Antimicrob. Agents Chemother. 45(11), 3092–3097 (2001).
  • Sipahi OR, Turhan T, Pullukcu H et al. Moxifloxacin versus ampicillin + gentamicin in the therapy of experimental Listeria monocytogenes meningitis. J. Antimicrob. Chemother. 61(3), 670–673 (2008).
  • Ostergaard C, Sorensen TK, Knudsen JD, Frimodt-Moller N. Evaluation of moxifloxacin, a new 8-methoxyquinolone, for treatment of meningitis caused by a penicillin-resistant pneumococcus in rabbits. Antimicrob. Agents Chemother. 42(7), 1706–1712 (1998).
  • Ruslami R, Ganiem AR, Dian S et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled Phase 2 trial. Lancet Infect. Dis. 13(1), 27–35 (2013).
  • Beer R, Engelhardt KW, Pfausler B et al. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrob. Agents Chemother. 51(1), 379–382 (2007).
  • Villani P, Regazzi MB, Marubbi F et al. Cerebrospinal fluid linezolid concentrations in postneurosurgical central nervous system infections. Antimicrob. Agents Chemother. 46(3), 936–937 (2002).
  • Rupprecht TA, Pfister HW. Clinical experience with linezolid for the treatment of central nervous system infections. Eur. J. Neurol. 12(7), 536–542 (2005).
  • Sipahi O R, Bardak S, Turhan T et al. Linezolid in the treatment of methicillin-resistant staphylococcal post-neurosurgical meningitis: a series of 17 cases. Scand. J. Infect. Dis. 43(10), 757–64 (2011).
  • Frasca KL, Schuster MG. Vancomycin-resistant enterococcal meningitis in an autologous stem cell transplant recipient cured with linezolid. Transpl. Infect. Dis. 15(1), E1–E4 (2013).
  • Morales G, Picazo JJ, Baos E et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin. Infect. Dis. 50(6), 821–825 (2010).
  • Rodvold KA, Gotfried MH, Cwik M et al. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J. Antimicrob. Chemother. 58(6), 1221–1229 (2006).
  • Ray L, Levasseur K, Nicolau DP, Scheetz MH. Cerebral spinal fluid penetration of tigecycline in a patient with Acinetobacter baumannii cerebritis. Ann. Pharmacother. 44(3), 582–6 (2010).
  • Lengerke C, Haap M, Mayer F et al. Low tigecycline concentrations in the cerebrospinal fluid of a neutropenic patient with inflamed meninges. Antimicrob. Agents Chemother. 55(1), 449–50 (2011).
  • Tutuncu E E, Kuscu F, Gurbuz Y et al. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis. Int. J. Infect. Dis. 14( Suppl. 3), e224–e226 (2010).
  • Garrison MW, Kawamura NM, Wen MM. Ceftaroline fosamil: a new cephalosporin active against resistant Gram-positive organisms including MRSA. Expert. Rev. Anti. Infect. Ther. 10(10), 1087–1103 (2012).
  • Patel SN, Pillai DR, Pong-Porter S et al. In vitro activity of ceftaroline, ceftobiprole and cethromycin against clinical isolates of Streptococcus pneumoniae collected from across Canada between 2003 and 2008. J. Antimicrob. Chemother. 64(3), 659–660 (2009).
  • Stucki A, Cottagnoud M, Acosta F et al. Evaluation of ceftobiprole activity against a variety of gram-negative pathogens, including Escherichia coli, Haemophilus influenzae (beta-lactamase positive and beta-lactamase negative), and Klebsiella pneumoniae, in a rabbit meningitis model. Antimicrob. Agents Chemother. 56(2), 921–925 (2012).
  • Pelkonen T, Roine I, Cruzeiro ML et al. Slow initial beta-lactam infusion and oral paracetamol to treat childhood bacterial meningitis: a randomised, controlled trial. Lancet Infect. Dis. 11(8), 613–621 (2011).
  • Nau R, Prange H W, Muth P et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob. Agents Chemother. 37(7), 1518–1524 (1993).
  • Stuertz K, Schmidt H, Eiffert H et al. Differential release of lipoteichoic and teichoic acids from Streptococcus pneumoniae as a result of exposure to beta-lactam antibiotics, rifamycins, trovafloxacin, and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 42(2), 277–281 (1998).
  • Webster DP, Griffiths S, Bowler IC. Failure of linezolid therapy for post-neurosurgical meningitis due to Enterococcus faecium. J. Antimicrob. Chemother. 63(3), 622–623 (2009).
  • Kim BN, Peleg AY, Lodise TP et al. Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infect. Dis. 9(4), 245–255 (2009).
  • Antachopoulos C, Karvanen M, Iosifidis E et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob. Agents Chemother. 54(9), 3985–3987 (2010).
  • Garnacho-Montero J, Amaya-Villar R. Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr. Opin. Infect. Dis. 23(4), 332–339 (2010).
  • Karaiskos I, Galani L, Baziaka F, Giamarellou H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review. Int. J. Antimicrob. Agents. 41(6), 499–508 (2013).
  • Hanninen P, Rossi T. Penetration of sulbactam into cerebrospinal fluid of patients with viral meningitis or without meningitis. Rev. Infect. Dis. 8( Suppl. 5), S609–S611 (1986).
  • Stahl JP, Bru JP, Fredj G et al. Penetration of sulbactam into the cerebrospinal fluid of patients with bacterial meningitis receiving ampicillin therapy. Rev. Infect. Dis. 8( Suppl. 5), S612–S616 (1986).
  • Foulds G, McBride TJ, Knirsch AK, Rodriguez WJ, Khan WN. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob. Agents Chemother. 31(11), 1703–1735 (1987).
  • Jimenez-Mejias ME, Pachon J, Becerril B et al. Treatment of multidrug-resistant Acinetobacter baumannii meningitis with ampicillin/sulbactam. Clin. Infect. Dis. 24(5), 932–935 (1997).
  • Cawley MJ, Suh C, Lee S, Ackerman BH. Nontraditional dosing of ampicillin-sulbactam for multidrug-resistant Acinetobacter baumannii meningitis. Pharmacotherapy. 22(4), 527–532 (2002).
  • Shapiro WR, Young DF, Mehta B M. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N. Engl J. Med. 293(4), 161–166 (1975).
  • McCracken GH Jr, Mize SG, Threlkeld N. Intraventricular gentamicin therapy in gram-negative bacillary meningitis of infancy. Report of the Second Neonatal Meningitis Cooperative Study Group. Lancet 1(8172), 787–791 (1980).
  • Odio CM, Faingezicht I, Paris M et al. The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis. N. Engl J. Med. 324(22), 1525–1531 (1991).
  • Scheld WM, Brodeur JP. Effect of methylprednisolone on entry of ampicillin and gentamicin into cerebrospinal fluid in experimental pneumococcal and Escherichia coli meningitis. Antimicrob. Agents Chemother. 23(1), 108–12 (1983).
  • Paris MM, Hickey SM, Trujillo M, Shelton S, McCracken GH Jr. Evaluation of CP-99,219, a new fluoroquinolone, for treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob. Agents Chemother. 39(6), 1243–1246 (1995).
  • Paris MM, Hickey SM, Uscher MI et al. Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob. Agents Chemother. 38(6), 1320–4 (1994).
  • Nau R, Wellmer A, Soto A et al. Rifampin reduces early mortality in experimental Streptococcus pneumoniae meningitis. J. Infect. Dis. 179(6), 1557–1560 (1999).
  • Focke NK, Kallenberg K, Mohr A et al. Distributed, limbic gray matter atrophy in patients after bacterial meningitis. AJNRAm J. Neuroradiol. 34(6), 1164–1167 (2012).
  • Schmidt H, Heimann B, Djukic M et al. Neuropsychological sequelae of bacterial and viral meningitis. Brain 129( Pt 2), 333–345 (2006).
  • Nau R and Schmidt H. Long-term neuropsychological deficits after central nervous system infections despite adequate therapy. J. Neurol. 254( Suppl. 2), II80–II83 (2007).
  • Zysk G, Bruck W, Gerber J et al. Anti-inflammatory treatment influences neuronal apoptotic cell death in the dentate gyrus in experimental pneumococcal meningitis. J. Neuropathol. Exp. Neurol. 55(6), 722–728 (1996).
  • Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J. Clin. Invest. 98(11), 2632–2639 (1996).
  • Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Taauber MG. Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr. Res. 54(3), 353–357 (2003).
  • Brown ES. Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy. Ann. NY. Acad. Sci. 1179, 41–55 (2009).
  • Weisfelt M, Hoogman M, van de Beek D et al. Dexamethasone and long-term outcome in adults with bacterial meningitis. Ann. Neurol. 60(4), 456–468 (2006).
  • van de Beek D, Farrar JJ, de Gans J et al. Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data. Lancet Neurol. 9(3), 254–263 (2010).
  • Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin. Microbiol. Rev. 23(3), 467–492 (2010).
  • Esposito S, Semino M, Picciolli I, Principi N. Should corticosteroids be used in bacterial meningitis in children? Eur. J. Paediatr. Neurol. 17(1), 24–28 (2013).
  • Heckenberg SG, Brouwer MC, van der Ende A, van de Beek D. Adjunctive dexamethasone in adults with meningococcal meningitis. Neurology 79(15), 1563–1569 (2012).
  • Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst. Rev. 6, CD004405 (2013).
  • Koedel U, Pfister H W. Protective effect of the antioxidant N-acetyl-L-cysteine in pneumococcal meningitis in the rat. Neurosci Lett. 225(1), 33–6 (1997).
  • Auer M, Pfister LA, Leppert D, Tauber MG, Leib SL. Effects of clinically used antioxidants in experimental pneumococcal meningitis. J. Infect. Dis. 182(1), 347–350 (2000).
  • Klein M, Koedel U, Pfister H W, Kastenbauer S. Meningitis-associated hearing loss: protection by adjunctive antioxidant therapy. Ann. Neurol. 54(4), 451–458 (2003).
  • Hogen T, Demel C, Giese A et al. Adjunctive N-acetyl-L-cysteine in murine pneumococcal meningitis. Antimicrob Agents Chemother. (2013) ( Epub ahead of print).
  • Nataf S, Stahel P F, Davoust N, Barnum S R. Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci. 22(9), 397–402 (1999).
  • Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat. Med. 7(4), 485–487 (2001).
  • Tuomanen E, Hengstler B, Zak O, Tomasz A. The role of complement in inflammation during experimental pneumococcal meningitis. Microb. Pathog. 1(1), 15–32 (1986).
  • Woehrl B, Brouwer M C, Murr C et al. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J. Clin. Invest. 121(10), 3943–3953 (2011).
  • Gerber J, Redlich S, Ribes S et al. Intrathecal treatment with the anti-phosphorylcholine monoclonal antibody TEPC-15 decreases neuronal damage in experimental pneumococcal meningitis. Chemotherapy 58(3), 212–216 (2012).
  • Nau R, Zettl U, Gerber J et al. Granulocytes in the subarachnoid space of humans and rabbits with bacterial meningitis undergo apoptosis and are eliminated by macrophages. Acta. Neuropathol. 96(5), 472–480 (1998).
  • Koedel U, Frankenberg T, Kirschnek S et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 5(5), e1000461 (2009).
  • Hoogendijk A J, Roelofs J J, Duitman J et al. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae. Mol. Med. 18, 1086–1095 (2012).
  • Krystof V, Uldrijan S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets 11(3), 291–302 (2010).
  • Malley R, Henneke P, Morse SC et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci. USA 100(4), 1966–1971 (2003).
  • Ebert S, Gerber J, Bader S et al. Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J. Neuroimmunol. 159(1–2), 87–96 (2005).
  • Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. (Lond). 121(9), 367–387 (2011).
  • Shirey KA, Lai W, Scott AJ et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497(7450), 498–502 (2013).
  • Goos M, Lange P, Hanisch UK et al. Fibronectin is elevated in the cerebrospinal fluid of patients suffering from bacterial meningitis and enhances inflammation caused by bacterial products in primary mouse microglial cell cultures. J. Neurochem. 102(6), 2049–2060 (2007).
  • Opal S M, Laterre P F, Francois B et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309(11), 1154–1162 (2013).
  • Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin. Microbiol. Rev. 15(1), 95–110 (2002).
  • Ribes S, Adam N, Schutze S et al. The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells. J. Neuroimmunol. 252(1–2), 16–23
  • Jarisch A. Therapeutische Versuche bei Syphilis. Wien Med. Wochenschr. 45, 721–724 (1895).
  • Herxheimer K, Krause K. Über eine bei Syphilitischen vorkommende Quecksilberreaktion. Dtsch. Med. Wochenschr. 28, 895–897 (1902).
  • Hopkin DA. Frapper fort ou frapper doucement: a gram-negative dilemma. Lancet 2(8101), 1193–1194 (1978).
  • Ahmed A, Jafri H, Lutsar I et al. Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob. Agents Chemother. 43(4), 876–881 (1999).
  • Spreer A, Lugert R, Stoltefaut V et al. Short-term rifampicin pretreatment reduces inflammation and neuronal cell death in a rabbit model of bacterial meningitis. Crit. Care Med. 37(7), 2253–2258 (2009).
  • Schneider O, Michel U, Zysk G, Dubuis O, Nau R. Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations. Neurology 53(7), 1584–1587 (1999).
  • Zimbelman J, Palmer A, Todd J. Improved outcome of clindamycin compared with beta-lactam antibiotic treatment for invasive Streptococcus pyogenes infection. Pediatr. Infect. Dis. J. 18(12), 1096–1100 (1999).
  • Aubry-Damon H, Soussy CJ, Courvalin P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 42(10), 2590–2594 (1998).
  • Enright M, Zawadski P, Pickerill P, Dowson C G. Molecular evolution of rifampicin resistance in Streptococcus pneumoniae. Microb. Drug Resist. 4(1), 65–70 (1998).
  • Gerber J, Pohl K, Sander V, Bunkowski S, Nau R. Rifampin followed by ceftriaxone for experimental meningitis decreases lipoteichoic acid concentrations in cerebrospinal fluid and reduces neuronal damage in comparison to ceftriaxone alone. Antimicrob. Agents Chemother. 47(4), 1313–1317 (2003).
  • Spreer A, Kerstan H, Bottcher T et al. Reduced release of pneumolysin by Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone. Antimicrob. Agents Chemother. 47(8), 2649–2654 (2003).
  • Azeh I, Gerber J, Wellmer A et al. Protein synthesis inhibiting clindamycin improves outcome in a mouse model of Staphylococcus aureus sepsis compared with the cell wall active ceftriaxone. Crit. Care Med. 30(7), 1560–1564 (2002).
  • Bottcher T, Ren H, Goiny M et al. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J. Neurochem. 91(6), 1450–1460 (2004).
  • Pogliano J, Pogliano N, Silverman J A. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J. Bacteriol. 194(17), 4494–4504 (2012).
  • Grandgirard D, Burri M, Agyeman P, Leib SL. Adjunctive daptomycin attenuates brain damage and hearing loss more efficiently than rifampin in infant rat pneumococcal meningitis. Antimicrob Agents Chemother. 56(8), 4289–4295 (2012).
  • Grandgirard D, Schurch C, Cottagnoud P, Leib SL. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob. Agents Chemother. 51(6), 2173–2178 (2007).
  • Barichello T, Goncalves JC, Generoso JS et al. Attenuation of cognitive impairment by the nonbacteriolytic antibiotic daptomycin in Wistar rats submitted to pneumococcal meningitis. BMC Neurosci. 14, 42 (2013).
  • Nau R. Osmotherapy for elevated intracranial pressure: a critical reappraisal. Clin. Pharmacokinet. 38(1), 23–40 (2000).
  • Schmidt H, Stuertz K, Chen V et al. Glycerol does not reduce neuronal damage in experimental Streptococcus pneumoniae meningitis in rabbits. Inflammopharmacology 6(1), 19–26 (1998).
  • Blaser C, Klein M, Grandgirard D et al. Adjuvant glycerol is not beneficial in experimental pneumococcal meningitis. BMC. Infect. Dis. 10, 84 (2010).
  • Peltola H, Roine I, Fernandez J et al. Adjuvant glycerol and/or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 45(10), 1277–1286 (2007).
  • Ajdukiewicz KM, Cartwright KE, Scarborough M et al. Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. Lancet Infect. Dis. 11(4), 293–300 (2011).
  • Wall EC, Ajdukiewicz KM, Heyderman RS, Garner P. Osmotic therapies added to antibiotics for acute bacterial meningitis. Cochrane Database Syst. Rev. 3, CD008806 (2013).
  • Nau R, Soto A, Bruck W. Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J. Neuropathol. Exp. Neurol. 58(3), 265–274 (1999).
  • Edwards GE. The use of hypothermia in a case of measles meningo-encephalitis. J. Ir. Med. Assoc. 42(252), 181–183 (1958).
  • Robinson A, Buckler JM. Emergency hypothermia in meningococcal meningitis. Lancet 1(7376), 81–83 (1965).
  • Veghelyi PV. Emergency hypothermic in meningococcal meningitis. Lancet 1(7387), 710 (1965).
  • Cuthbertson BH, Dickson R, Mackenzie A. Intracranial pressure measurement, induced hypothermia and barbiturate coma in meningitis associated with intractable raised intracranial pressure. Anaesthesia 59(9), 908–911 (2004).
  • Lepur D, Kutlesa M, Barsic B. Induced hypothermia in adult community-acquired bacterial meningitis--more than just a possibility? J. Infect. 62(2), 172–177 (2011).
  • Irazuzta JE, Pretzlaff R K, Zingarelli B, Xue V, Zemlan F. Modulation of nuclear factor-kappaB activation and decreased markers of neurological injury associated with hypothermic therapy in experimental bacterial meningitis. Crit. Care Med. 30(11), 2553–2559 (2002).
  • Angstwurm K, Reuss S, Freyer D et al. Induced hypothermia in experimental pneumococcal meningitis. J. Cereb. Blood Flow Metab. 20(5), 834–838 (2000).
  • Bruno Mourvillier et al. CHU Paris Nord-Val de Seine – Hôpital Xavier Bichat-Claude Bernard, Paris, France, Abstract 41st Congress of the French Society for Reanimation, Paris. (2013).
  • Adams W G, Deaver K A, Cochi S L et al. Decline of childhood Haemophilus influenzae type b (Hib) disease in the Hib vaccine era. JAMA 269(2), 221–226 (1993).
  • Hak E, Grobbee DE, Sanders EA et al. Rationale and design of CAPITA: a RCT of 13-valent conjugated pneumococcal vaccine efficacy among older adults. Neth. J. Med. 66(9), 378–383 (2008).
  • Campbell H, Andrews N, Borrow R, Trotter C, Miller E. Updated postlicensure surveillance of the meningococcal C conjugate vaccine in England and Wales: effectiveness, validation of serological correlates of protection, and modeling predictions of the duration of herd immunity. Clin. Vaccine Immunol. 17(5), 840–847 (2010).
  • Ladhani SN, Flood JS, Ramsay ME et al. Invasive meningococcal disease in England and Wales: implications for the introduction of new vaccines. Vaccine 30(24), 3710–3716 (2012).
  • Gossger N, Snape MD, Yu LM et al. Immunogenicity and tolerability of recombinant serogroup B meningococcal vaccine administered with or without routine infant vaccinations according to different immunization schedules: a randomized controlled trial. JAMA 307(6), 573–582 (2012).
  • Gamez G, Hammerschmidt S. Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development. Curr. Drug Targets. 13(3), 323–37 (2012).
  • Ribes S, Ebert S, Regen T et al. Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. Infect. Immun. 78(2), 865–871 (2010).
  • Ribes S, Adam N, Schutze S et al. The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells. J. Neuroimmunol. 252(1–2), 16–23 (2012).
  • Ribes S, Riegelmann J, Redlich S et al. Multivalent choline dendrimers phagocytosis of Streptococcus pneumoniae R6 by microglial cells. Chemotherapy (2013) (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.