705
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic antibodies as a treatment option for dengue fever

, &
Pages 1147-1157 | Published online: 10 Jan 2014

References

  • Bhatt S, Gething PW, Brady OJ et al. The global distribution and burden of dengue. Nature 496(7446), 504–507 (2013).
  • Simmons CP, Farrar JJ, Nguyen v V, Wills B. Dengue. N. Engl. J. Med. 366(15), 1423–1432 (2012).
  • Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10(2), 100–103 (2002).
  • Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp. Immunol. Microbiol. Infect. Dis. 27(5), 319–330 (2004).
  • Gubler DJ, Meltzer M. Impact of dengue/dengue hemorrhagic fever on the developing world. Adv. Virus Res. 53, 35–70 (1999).
  • Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV. Dengue and dengue haemorrhagic fever. Lancet 352(9132), 971–977 (1998).
  • Sabin AB. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1(1), 30–50 (1952).
  • Imrie A, Meeks J, Gurary A et al. Antibody to dengue 1 detected more than 60 years after infection. Viral. Immunol. 20(4), 672–675 (2007).
  • Murphy BR, Whitehead SS. Immune response to dengue virus and prospects for a vaccine. Ann. Rev. Immunol. 29, 587–619 (2011).
  • Simmons CP, Chau TN, Thuy TT et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J. Infect. Dis. 196(3), 416–424 (2007).
  • Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science 239(4839), 476–481 (1988).
  • Kliks SC, Nimmanitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg. 38(2), 411–419 (1988).
  • Gubler DJ, Clark GG. Community-based integrated control of Aedes aegypti: a brief overview of current programs. Am. J. Trop. Med. Hyg. 50(6 Suppl.), 50–60 (1994).
  • Gubler DJ. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig Lecture. Am. J. Trop. Med. Hyg. 40(6), 571–578 (1989).
  • Goh KT. Changing epidemiology of dengue in Singapore. Lancet 346(8982), 1098 (1995).
  • Ooi EE, Hart TJ, Tan HC, Chan SH. Dengue seroepidemiology in Singapore. Lancet 357(9257), 685–686 (2001).
  • Ooi EE, Goh KT, Gubler DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12(6), 887–893 (2006).
  • Halstead SB, O'Rourke EJ. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265(5596), 739–741 (1977).
  • Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 146(1), 201–217 (1977).
  • Monath TP. Prospects for development of a vaccine against the West Nile virus. Ann. NY Acad. Sci. 951, 1–12 (2001).
  • Guirakhoo F, Weltzin R, Chambers TJ et al. Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. J. Virol. 74(12), 5477–5485 (2000).
  • Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 28(3), 632–649 (2010).
  • Guy B. Immunogenicity of sanofi pasteur tetravalent dengue vaccine. J. Clin. Virol. 46( Suppl. 2), S16–19 (2009).
  • Sabchareon A, Wallace D, Sirivichayakul C et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380(9853), 1559–1567 (2012).
  • Srikiatkhachorn A, Wichit S, Gibbons RV et al. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status. PloS ONE 7(12), e51335 (2012).
  • Carter PJ. Potent antibody therapeutics by design. Nat. Rev. Immunol. 6(5), 343–357 (2006).
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1(2), 118–129 (2001).
  • Presta LG. Engineering antibodies for therapy. Curr. Pharma. Biotechnol. 3(3), 237–256 (2002).
  • Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat. Biotechnol. 25(12), 1421–1434 (2007).
  • Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin. Microbiol. Rev. 13(4), 602–614 (2000).
  • Lai CY, Tsai WY, Lin SR et al. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. virol. 82(13), 6631–6643 (2008).
  • Beltramello M, Williams KL, Simmons CP et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 8(3), 271–283 (2010).
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328(5979), 745–748 (2010).
  • Kashmiri SV, De Pascalis R, Gonzales NR, Schlom J. SDR grafting--a new approach to antibody humanization. Methods 36(1), 25–34 (2005).
  • Sloan SE, Hanlon C, Weldon W et al. Identification and characterization of a human monoclonal antibody that potently neutralizes a broad panel of rabies virus isolates. Vaccine 25(15), 2800–2810 (2007).
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23(9), 1105–1116 (2005).
  • Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr. Opin. Biotechnol. 18(6), 523–528 (2007).
  • Huang K, Incognito L, Cheng X, Ulbrandt ND, Wu H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J. virol. 84(16), 8132–8140 (2010).
  • Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 102(3 Pt 1), 531–537 (1998).
  • Parnes C, Guillermin J, Habersang R et al. Palivizumab prophylaxis of respiratory syncytial virus disease in 2000–2001: results from The Palivizumab Outcomes Registry. Pediatr. Pulmonol. 35(6), 484–489 (2003).
  • Zhu Z, Bossart KN, Bishop KA et al. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis. 197(6), 846–853 (2008).
  • Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108(5), 717–725 (2002).
  • Rey FA. Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc. Natl Acad. Sci. USA 100(12), 6899–6901 (2003).
  • Brien JD, Austin SK, Sukupolvi-Petty S et al. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J. Virol. 84(20), 10630–10643 (2010).
  • Sukupolvi-Petty S, Austin SK, Engle M et al. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J. Virol. 84(18), 9227–9239 (2010).
  • Sinclair R, Moult BJ, Mumford JA. Characterization of an antigenic site on glycoprotein 13 (gC) of equid herpesvirus type-1. Arch. Virol. 129(1–4), 327–336 (1993).
  • Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75(16), 7769–7773 (2001).
  • Shrestha B, Brien JD, Sukupolvi-Petty S et al. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS pathog. 6(4), e1000823 (2010).
  • de Alwis R, Beltramello M, Messer WB et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 5(6), e1188 (2011).
  • Wahala WM, Huang C, Butrapet S, White LJ, de Silva AM. Recombinant dengue type 2 viruses with altered e protein domain III epitopes are efficiently neutralized by human immune sera. J. Virol. 86(7), 4019–4023 (2012).
  • Williams KL, Wahala WM, Orozco S, de Silva AM, Harris E. Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology 429(1), 12–20 (2012).
  • de Alwis R, Smith SA, Olivarez NP et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl Acad. Sci. USA 109(19), 7439–7444 (2012).
  • Teoh EP, Kukkaro P, Teo EW et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4(139), 139ra183 (2012).
  • Vogt MR, Moesker B, Goudsmit J et al. Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J. Virol. 83(13), 6494–6507 (2009).
  • Kaufmann B, Vogt MR, Goudsmit J et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc. Natl Acad. Sci. USA 107(44), 18950–18955 (2010).
  • Wahala WM, Donaldson EF, de Alwis R, Accavitti-Loper MA, Baric RS, de Silva AM. Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS pathog. 6(3), e1000821 (2010).
  • Zou G, Kukkaro P, Lok SM et al. Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antivir. Res. 95(3), 216–223 (2012).
  • Brien JD, Sukupolvi-Petty S, Williams KL et al. Protection by Immunoglobulin Dual-Affinity Retargeting Antibodies against Dengue Virus. J. Virol. 87(13), 7747–7753 (2013).
  • Della-Porta AJ, Westaway EG. A multi-hit model for the neutralization of animal viruses. J. Gen. Virol. 38(1), 1–19 (1978).
  • Dowd KA, Pierson TC. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology 411(2), 306–315 (2011).
  • Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev. Mol. Med. 10, e12 (2008).
  • Pierson TC, Xu Q, Nelson S et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe. 1(2), 135–145 (2007).
  • Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe. 4(3), 229–238 (2008).
  • Lok SM, Kostyuchenko V, Nybakken GE et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Bio. 15(3), 312–317 (2008).
  • Gollins SW, Porterfield JS. A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature 321(6067), 244–246 (1986).
  • Chen Y, Maguire T, Hileman RE et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3(8), 866–871 (1997).
  • Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 79(8), 4557–4567 (2005).
  • Chen YC, Wang SY, King CC. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J. Virol. 73(4), 2650–2657 (1999).
  • Chen ST, Lin YL, Huang MT et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453(7195), 672–676 (2008).
  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197(7), 823–829 (2003).
  • Miller JL, de Wet BJ, Martinez-Pomares L et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS pathog. 4(2), e17 (2008).
  • Chan KR, Zhang SL, Tan HC et al. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc. Natl Acad. Sci. USA 108(30), 12479–12484 (2011).
  • van der Schaar HM, Rust MJ, Chen C et al. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 4(12), e1000244 (2008).
  • Haas A. The phagosome: compartment with a license to kill. Traffic 8(4), 311–330 (2007).
  • Thompson BS, Moesker B, Smit JM, Wilschut J, Diamond MS, Fremont DH. A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog. 5(5), e1000453 (2009).
  • Kurane I, Hebblewaite D, Brandt WE, Ennis FA. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 52(1), 223–230 (1984).
  • Nakamura M, Sasaki H, Terada M, Ohno T. Complement-dependent virolysis of HIV-1 with monoclonal antibody NM-01. AIDS Res. Hum Retroviruses 9(7), 619–626 (1993).
  • Yamanaka A, Kosugi S, Konishi E. Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J. Virol. 82(2), 927–937 (2008).
  • Mehlhop E, Ansarah-Sobrinho C, Johnson S et al. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe. 2(6), 417–426 (2007).
  • Russell PK, Nisalak A. Dengue virus identification by the plaque reduction neutralization test. J. Immunol. 99(2), 291–296 (1967).
  • Russell PK, Nisalak A, Sukhavachana P, Vivona S. A plaque reduction test for dengue virus neutralizing antibodies. J. Immunol. 99(2), 285–290 (1967).
  • Endy TP, Nisalak A, Chunsuttitwat S et al. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J. Infect. Dis. 189(6), 990–1000 (2004).
  • Kou Z, Quinn M, Chen H et al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J. Med. Virol. 80(1), 134–146 (2008).
  • Wu RS, Chan KR, Tan HC, Chow A, Allen JCJr, Ooi EE. Neutralization of dengue virus in the presence of Fc receptor-mediated phagocytosis distinguishes serotype-specific from cross-neutralizing antibodies. Antivir. Res. 96(3), 340–343 (2012).
  • Tharakaraman K, Robinson LN, Hatas A et al. Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency. Proc. Natl Acad. Sci. USA 110(17), E1555–1564 (2013).
  • Williams KL, Sukupolvi-Petty S, Beltramello M et al. Therapeutic efficacy of antibodies lacking FcgammaR against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies. PLoS Pathog. 9(2), e1003157 (2013).
  • Sapir T, Shoenfeld Y. Facing the enigma of immunomodulatory effects of intravenous immunoglobulin. Clin. Rev. Allergy Immunol. 29(3), 185–199 (2005).
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787), 670–673 (2006).
  • Tackenberg B, Jelcic I, Baerenwaldt A et al. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc. Natl Acad. Sci. USA 106(12), 4788–4792 (2009).
  • Jaiyen Y, Masrinoul P, Kalayanarooj S, Pulmanausahakul R, Ubol S. Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness. Microbiol. Immunol. 53(8), 442–450 (2009).
  • Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10(5), 328–343 (2010).
  • Zellweger RM, Prestwood TR, Shresta S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe. 7(2), 128–139 (2010).
  • Balsitis SJ, Williams KL, Lachica R et al. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 6(2), e1000790 (2010).
  • Wu AM, Yazaki PJ. Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44(3), 268–283 (2000).
  • Bruhns P, Iannascoli B, England P et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16), 3716–3725 (2009).
  • Jacobson JM, Kuritzkes DR, Godofsky E et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob. Agents Chemother. 53(2), 450–457 (2009).
  • Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl Acad. Sci. USA 104(22), 9422–9427 (2007).
  • Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372(6504), 379–383 (1994).
  • Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. J. Immunol. 176(1), 346–356 (2006).
  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J. Biol. Chem. 282(3), 1709–1717 (2007).
  • Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies. Immunol. Rev. 222, 9–27 (2008).
  • Schieffelin JS, Costin JM, Nicholson CO et al. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient. Virol. J. 7, 28 (2010).
  • Smith SA, Zhou Y, Olivarez NP, Broadwater AH, de Silva AM, Crowe JEJr. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J. Virol. 86(5), 2665–2675 (2012).
  • Costin JM, Zaitseva E, Kahle KM et al. Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop. J. Virol. 87(1), 52–66 (2013).
  • Setthapramote C, Sasaki T, Puiprom O et al. Human monoclonal antibodies to neutralize all dengue virus serotypes using lymphocytes from patients at acute phase of the secondary infection. Biochem. Biophys. Res. Commun. 423(4), 867–872 (2012).
  • Sasaki T, Setthapramote C, Kurosu T et al. Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antiviral Res. 98(3), 423–431 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.