223
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Delivery of host cell-directed therapeutics for intracellular pathogen clearance

, , , , , , & show all
Pages 1225-1235 | Published online: 10 Jan 2014

References

  • Khasnobis S, Escuyer VE, Chatterjee D. Emerging therapeutic targets in tuberculosis: post-genomic era. Expert Opin. Ther. Targets 6(1), 21–40 (2002).
  • Jaramillo E. Encompassing treatment with prevention: the path for a lasting control of tuberculosis. Soc. Sci. Med. 49(3), 393–404 (1999).
  • Lawn SD, Zumla AI. Tuberculosis. Lancet 378(9785), 57–72 (2011).
  • Zumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N. Engl. J. Med. 368(8), 745–755 (2013).
  • Kobets T, Grekov I, Lipoldova M. Leishmaniasis: prevention, parasite detection and treatment. Curr. Med. Chem. 19(10), 1443–1474 (2012).
  • Coburn B, Grassl GA, Finlay BB. Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85(2), 112–118 (2007).
  • Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull. World Health Organ. 82(5), 346–353 (2004).
  • Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob. Agents Chemother. 45(11), 2977–2986 (2001).
  • McCafferty DG, Cudic P, Yu MK, Behenna DC, Kruger R. Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. 3(6), 672–680 (1999).
  • Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. North Am. 17(3), 615–634 (2003).
  • Sundar S, More DK, Singh MK et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin. Infect. Dis. 31(4), 1104–1107 (2000).
  • Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol. Biol. Int. 2011, 571242 (2011).
  • Davies JH. Staphylococcal infection by penicillin-resistant strains. Br. Med. J. 2(4538), 1054 (1947).
  • Chiu HC, Lee SL, Kapuriya N et al. Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. 20(15), 4653–4660 (2012).
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10(12 Suppl.), S122–129 (2004).
  • Costa SS, Ntokou E, Martins A et al. Identification of the plasmid-encoded qacA efflux pump gene in meticillin-resistant Staphylococcus aureus (MRSA) strain HPV107, a representative of the MRSA Iberian clone. Int. J. Antimicrob. Agents 36(6), 557–561 (2010).
  • Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51(1), 9–11 (2003).
  • Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J. Membr. Biol. 19(3), 277–303 (1974).
  • Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann. NY Acad. Sci. 1271, 20–32 (2012).
  • Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76, 447–480 (2007).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 4(7), 499–511 (2004).
  • Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111(7), 927–930 (2002).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006).
  • Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 93(6), 847–863 (2013).
  • Bowie A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 67(4), 508–514 (2000).
  • Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085), 808–812 (2006).
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17(1), 1–14 (2005).
  • Vuopio-Varkila J, Nurminen M, Pyhala L, Makela PH. Lipopolysaccharide-induced non-specific resistance to systemic Escherichia coli infection in mice. J. Med. Microbiol. 25(3), 197–203 (1988).
  • Alderson MR, McGowan P, Baldridge JR, Probst P. TLR4 agonists as immunomodulatory agents. J. Endotoxin Res. 12(5), 313–319 (2006).
  • Thompson BS, Chilton PM, Ward JR, Evans JT, Mitchell TC. The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol. 78(6), 1273–1280 (2005).
  • Kochan T, Singla A, Tosi J, Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect. Immun. 80(6), 2076–2088 (2012).
  • Voltan S, Castagliuolo I, Elli M et al. Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin. Vaccine Immunol. 14(9), 1138–1148 (2007).
  • Nardin EH, Calvo-Calle JM, Oliveira GA et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J. Immunol. 166(1), 481–489 (2001).
  • No authors listed. Mismatched double-stranded RNA: polyI:polyC12U. Drugs R. D. 5(5), 297–304 (2004).
  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 290(5497), 1717–1721 (2000).
  • Byrne BG, Dubuisson JF, Joshi AD, Persson JJ, Swanson MS. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4(1), e00620–00612 (2013).
  • Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 27(7), 1110–1121 (2008).
  • Chiu HC, Soni S, Kulp SK et al. Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J. Biomed. Sci. 16, 110 (2009).
  • Chiu HC, Kulp SK, Soni S et al. Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob. Agents Chemother. 53(12), 5236–5244 (2009).
  • Chiu HC, Yang J, Soni S et al. Pharmacological exploitation of an off-target antibacterial effect of the cyclooxygenase-2 inhibitor celecoxib against Francisella tularensis. Antimicrob. Agents Chemother. 53(7), 2998–3002 (2009).
  • Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist 8( Suppl. 8), 3–9 (2003).
  • Sauder DN. Immunomodulatory and pharmacologic properties of imiquimod. J. Am. Acad. Dermatol. 43(1 Pt 2), S6–11 (2000).
  • Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 52, 481–503 (2012).
  • Oyston PC, Fox MA, Richards SJ, Clark GC. Novel peptide therapeutics for treatment of infections. J. Med. Microbiol. 58(Pt 8), 977–987 (2009).
  • Kanthamneni N, Sharma S, Meenach SA et al. Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions. Int. J. Pharm. 431(1–2), 101–110 (2012).
  • Cukierman E, Khan DR. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem. Pharmacol. 80(5), 762–770 (2010).
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298(2), 315–322 (2005).
  • Hirota K, Hasegawa T, Hinata H et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J. Control. Release 119(1), 69–76 (2007).
  • Hrkach J, Von Hoff D, Mukkaram Ali M et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra139 (2012).
  • Service RF. Nanotechnology. Nanoparticle Trojan horses gallop from the lab into the clinic. Science 330(6002), 314–315 (2010).
  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012).
  • US Environmental Protection Agency. Methylene Chloride (Dichloromethane). Technology Transfer Network Air Toxics Web Site (2000).
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70(1–2), 1–20 (2001).
  • Baras B, Benoit MA, Gillard J. Influence of various technological parameters on the preparation of spray-dried poly(epsilon-caprolactone) microparticles containing a model antigen. J. Microencapsul. 17(4), 485–498 (2000).
  • Varshosaz J, Ahmadi F, Emami J et al. Microencapsulation of budesonide with dextran by spray drying technique for colon-targeted delivery: an in vitro/in vivo evaluation in induced colitis in rat. J. Microencapsul. 28(1), 62–73 (2011).
  • Nounou MM, El-Khordagui LK, Khalafallah N. Release stability of 5-fluorouracil liposomal concentrates, gels and lyophilized powder. Acta poloniae pharmaceutica. 62(5), 381–391 (2005).
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1(3), 297–315 (2006).
  • Filipovic-Grcic J, Skalko-Basnet N, Jalsenjak I. Mucoadhesive chitosan-coated liposomes: characteristics and stability. J. Microencapsul. 18(1), 3–12 (2001).
  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6(5), 1949–1957 (2000).
  • Lu L, Peter SJ, Lyman MD et al. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21(18), 1837–1845 (2000).
  • Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130(32), 10494–10495 (2008).
  • Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JM. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc. Natl Acad. Sci. USA 106(14), 5497–5502 (2009).
  • Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3), 295–298 (1997).
  • Meyer T, Surber C, French LE, Stockfleth E. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin. Investig. Drugs 22(1), 149–159 (2013).
  • Drake MG, Kaufman EH, Fryer AD, Jacoby DB. The therapeutic potential of Toll-like receptor 7 stimulation in asthma. Inflamm. Allergy Drug Targets 11(6), 484–491 (2012).
  • Weberschock T, Strametz R, Lorenz M et al. Interventions for mycosis fungoides. Cochrane Database Syst. Rev. 9, CD008946 (2012).
  • Minodier P, Parola P. Cutaneous leishmaniasis treatment. Travel Med. Infect. Dis. 5(3), 150–158 (2007).
  • Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomodulators. J. Antimicrob. Chemother. 48(6), 751–755 (2001).
  • Chollet JL, Jozwiakowski MJ, Phares KR et al. Development of a topically active imiquimod formulation. Pharm. Dev. Technol. 4(1), 35–43 (1999).
  • Kono T, Kondo S, Pastore S et al. Effects of a novel topical immunomodulator, imiquimod, on keratinocyte cytokine gene expression. Lymphokine Cytokine Res. 13(2), 71–76 (1994).
  • Schon MP, Schon M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 27(2), 190–199 (2008).
  • Bachelder EM, Beaudette TT, Broaders KE et al. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol. Pharm. 7(3), 826–835 (2010).
  • Homhuan A. Maturation of dendritic cells induced by nano-liposomes containing imiquimod. Asian Biomedicine 2(3), 233–239 (2008).
  • Duong AD, Sharma S, Peine KJ et al. Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Mol. Pharm. 10(3), 1045–1055 (2013).
  • Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv. Drug Deliv. Rev. 60(7), 805–812 (2008).
  • Pyles RB, Jezek GE, Eaves-Pyles TD. Toll-like receptor 3 agonist protection against experimental Francisella tularensis respiratory tract infection. Infect. Immun. 78(4), 1700–1710 (2010).
  • Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin. Immunopathol. 34(2), 281–297 (2012).
  • Seya T, Matsumoto M. The extrinsic RNA-sensing pathway for adjuvant immunotherapy of cancer. Cancer Immunol. Immunother. 58(8), 1175–1184 (2009).
  • Lang KS, Recher M, Junt T et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11(2), 138–145 (2005).
  • Smole A, Krajnik AK, Oblak A, Pirher N, Jerala R. Delivery system for the enhanced efficiency of immunostimulatory nucleic acids. Innate. Immun. 19(1), 53–65 (2013).
  • Peine K, Bachelder EM, Vangundy Z et al. Efficient delivery of the TLR-agonists poly I:C and CpG to macrophages by acetalated dextran microparticles. Mol. Pharmaceutics 10(8), 2849–2857 (2013).
  • Ballarin-Gonzalez B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv. Drug Deliv. Rev. 64(15), 1717–1729 (2012).
  • Rutz M, Metzger J, Gellert T et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34(9), 2541–2550 (2004).
  • Milas L, Mason KA, Ariga H et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 64(15), 5074–5077 (2004).
  • Fonseca DE, Kline JN. Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv. Drug Deliv. Rev. 61(3), 256–262 (2009).
  • Sane SA, Shakya N, Haq W, Gupta S. CpG oligodeoxynucleotide augments the antileishmanial activity of miltefosine against experimental visceral leishmaniasis. J. Antimicrob. Chemother. 65(7), 1448–1454 (2010).
  • Kwant A, Rosenthal KL. Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine 22(23–24), 3098–3104 (2004).
  • Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10(2), 187–192 (2004).
  • Segal BM, Chang JT, Shevach EM. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. J. Immunol. 164(11), 5683–5688 (2000).
  • Golali E, Jaafari MR, Khamesipour A, Abbasi A, Saberi Z, Badiee A. Comparison of in vivo adjuvanticity of liposomal PO CpG ODN with liposomal PS CpG ODN: soluble leishmania antigens as a model. Iran J. Basic Med. Sci. 15(5), 1032–1045 (2012).
  • Manoharan Y, Ji Q, Yamazaki T et al. Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-alpha. Int. J. Nanomedicine 7, 3625–3635 (2012).
  • Das S, Roy P, Mondal S, Bera T, Mukherjee A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf. B Biointerfaces 107, 27–34 (2013).
  • Hutson S. Half-century-old TB drugs get a facelift in new cocktails. Nat. Med. 16(12), 1346 (2010).
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10(2), 417–426 (2002).
  • von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).
  • Puri N, Weyand EH, Abdel-Rahman SM, Sinko PJ. An investigation of the intradermal route as an effective means of immunization for microparticulate vaccine delivery systems. Vaccine 18(23), 2600–2612 (2000).
  • Bal SM, Slutter B, Verheul R, Bouwstra JA, Jiskoot W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur. J. Pharm. Sci. 45(4), 475–481 (2012).
  • Wischke C, Mathew S, Roch T, Frentsch M, Lendlein A. Potential of NOD receptor ligands as immunomodulators in particulate vaccine carriers. J. Control. Release 164(3), 299–306 (2012).
  • Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol. Rev. 65(3), 872–905 (2013).
  • Valdivia-Arenas M, Amer A, Henning L, Wewers M, Schlesinger L. Lung infections and innate host defense. Drug Discov. Today Dis. Mech. 4(2), 73–81 (2007).
  • Kuhlman M, Joiner K, Ezekowitz RA. The human mannose-binding protein functions as an opsonin. J. Exp. Med. 169(5), 1733–1745 (1989).
  • Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143, 1–20 (2008).
  • Miranda-Verastegui C, Tulliano G, Gyorkos TW et al. First-line therapy for human cutaneous leishmaniasis in Peru using the TLR7 agonist imiquimod in combination with pentavalent antimony. PLoS Negl. Trop. Dis. 3(7), e491 (2009).
  • Arevalo I, Ward B, Miller R et al. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin. Infect. Dis. 33(11), 1847–1851 (2001).
  • Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat. Biotechnol. 24(10), 1211–1217 (2006).
  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1), 1–14 (2013).
  • Sheridan C. Proof of concept for next-generation nanoparticle drugs in humans. Nat. Biotechnol. 30(6), 471–473 (2012).
  • BBC Research. Nanotechnology in medical applications: the global market. BBC Market Forcasting, January (2012).
  • Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol. 37(8), 2063–2074 (2007).
  • Boghdadi G, Khalik DA, Wahab SA, Farghaly A. Immunomodulatory effect of R848 on cytokine production associated with Schistosoma mansoni infection. Parasitol. Res. 112(1), 135–140 (2013).
  • Halperin SA, Dobson S, McNeil S et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine 24(1), 20–26 (2006).
  • Demento SL, Bonafe N, Cui W et al. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol. 185(5), 2989–2997 (2010).
  • Stone GW, Barzee S, Snarsky V et al. Nanoparticle-delivered multimeric soluble CD40L DNA combined with Toll-Like R eceptor agonists as a treatment for melanoma. PLoS ONE 4(10), e7334 (2009).
  • Ichinohe T, Watanabe I, Ito S et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J. Virol. 79(5), 2910–2919 (2005).
  • Wischke C, Zimmermann J, Wessinger B et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm. 365(1–2), 61–68 (2009).
  • Heuking S, Adam-Malpel S, Sublet E, Iannitelli A, Stefano A, Borchard G. Stimulation of human macrophages (THP-1) using Toll-like receptor-2 (TLR-2) agonist decorated nanocarriers. J. Drug Target 17(8), 662–670 (2009).
  • Borchard G, Primard C. Adjuvant Effect of Plga Nanocarrier Vectorizing One or Two Tlr Agonists, Administered by Nasal Route. University of Geneva, University of Lausanne, Geneva, CH (2011).
  • Boland G, Beran J, Lievens M et al. Safety and immunogenicity profile of an experimental hepatitis B vaccine adjuvanted with AS04. Vaccine 23(3), 316–320 (2004).
  • Buckland KF, Ramaprakash H, Murray LA et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) modulates immune responses to Aspergillus fumigatus during fungal asthma in mice. Immunol. Invest. 40(7–8), 692–722 (2011).
  • Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O’Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release 110(3), 566–573 (2006).
  • Chong CS, Cao M, Wong WW et al. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control. Release 102(1), 85–99 (2005).
  • Huleatt JW, Nakaar V, Desai P et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26(2), 201–214 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.