184
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Clostridium difficile surveillance: harnessing new technologies to control transmission

&
Pages 1193-1205 | Published online: 10 Jan 2014

References

  • Lee TB, Montgomery OG, Marx J, Olmsted RN, Scheckler WE, Association for Professionals in Infection Control and Epidemiology. Recommended practices for surveillance: association for professionals in infection control and epidemiology (APIC), Inc. Am. J. Infect. Control. 35(7), 427–440 (2007).
  • Cohen SH, Gerding DN, Johnson S et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control Hosp. Epidemiol. 31(5), 431–455 (2010).
  • Freeman J, Bauer MP, Baines SD et al. The Changing Epidemiology of Clostridium difficile Infections. Clin. Microbiol. Rev. 23(3), 529–549 (2010).
  • Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu. Rev. Microbiol. 65, 501–521 (2011).
  • Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 156(Pt 11), 3216–3223 (2010).
  • Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6(11), e280 (2008).
  • McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N. Engl J. Med. 320(4), 204–210 (1989).
  • Samore MH, DeGirolami PC, Tlucko A, Lichtenberg DA, Melvin ZA, Karchmer AW. Clostridium difficile colonization and diarrhea at a tertiary care hospital. Clin. Infect. Dis. 18(2), 181–187 (1994).
  • Dubberke ER, Reske KA, Olsen MA et al. Evaluation of Clostridium difficile-associated disease pressure as a risk factor for C difficile-associated disease. Arch. Intern. Med. 167(10), 1092–1097 (2007).
  • Vonberg R-P, Kuijper EJ, Wilcox MH et al. Infection control measures to limit the spread of Clostridium difficile. Clin. Microbiol. Infect. 14 ( Suppl. 5), 2–20 (2008).
  • He M, Miyajima F, Roberts P et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45(1), 109–113 (2012).
  • Loo VG, Poirier L, Miller MA et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl J. Med. 353(23), 2442–2449 (2005).
  • Birgand G, Blanckaert K, Carbonne A et al. Investigation of a large outbreak of Clostridium difficile PCR-ribotype 027 infections in northern France, 2006–2007 and associated clusters in 2008–2009. Euro. Surveill. 15(25), pii: 19597 (2010).
  • Hensgens MPM, Keessen EC, Squire MM et al. Clostridium difficile infection in the community: a zoonotic disease? Clin. Microbiol. Infect. 18(7), 635–645 (2012).
  • Eyre DW, Cule ML, Wilson DJ et al. Whole genome sequencing reveals C. difficile infection likely to arise from diverse sources. N. Engl. J. Med. 369(13), 1195–1205 (2013).
  • Walker AS, Eyre DW, Wyllie DH et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med. 9(2), e1001172 (2012).
  • Norén T, Akerlund T, Bäck E et al. Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. J. Clin. Microbiol. 42(8), 3635–3643 (2004).
  • Goorhuis A, Bakker D, Corver J et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. J. Clin. Infect. Dis. 47(9), 1162–1170 (2008).
  • Riley TV, Eyre DW, Crook DW, Fawley WN, Wilcox MH. An outbreak of community-acquired Clostridium difficile infection in Australia 2011–12 Presented at: 4th International Clostridium difficile Symposium, Bled, Slovenia, 2012.
  • Marsh JW, O’Leary MM, Shutt KA et al. Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in Hospitals. J. Clin. Microbiol. 44(7), 2558–2566 (2006).
  • Eyre DW, Fawley WN, Best EL et al. Comparison of multilocus variable number tandem repeat analysis and whole genome sequencing for investigation of Clostridium difficile transmission. J. Clin. Microbiol. doi:10.1128/JCM.01095-13 (2013) (Epub ahead of print).
  • Eyre DW, Golubchik T, Gordon NC et al. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open. 2(3), e001124 (2012).
  • Finney JM, Walker AS, Peto TEA, Wyllie DH. An efficient record linkage scheme using graphical analysis for identifier error detection. BMC Med Inform Decis Mak. 11, 7 (2011).
  • McDonald LC, Coignard B, Dubberke E et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect. Control Hosp. Epidemiol. 28(2), 140–145 (2007).
  • Unkel S, Farrington C, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. J. Roy. Stat. Soc. Ser. A. 175(1), 49–82 (2012).
  • Reil M, Hensgens MPM, Kuijper EJ et al. Seasonality of Clostridium difficile infections in Southern Germany. Epidemiol. Infect. 140(10), 1787–1793 (2012).
  • Gilca R, Hubert B, Fortin E, Gaulin C, Dionne M. Epidemiological patterns and hospital characteristics associated with increased incidence of Clostridium difficile infection in Quebec, Canada, 1998–2006. Infect. Control Hosp. Epidemiol. 31(9), 939–947 (2010).
  • Polgreen PM, Yang M, Bohnett LC, Cavanaugh JE. A time-series analysis of clostridium difficile and its seasonal association with influenza. Infect. Control Hosp. Epidemiol. 31(4), 382–387 (2010).
  • Gilca R, Fortin E, Frenette C, Longtin Y, Gourdeau M. Seasonal Variations in Clostridium difficile infections are associated with influenza and respiratory syncytial virus activity independently of antibiotic prescriptions: a time series analysis in Quebec, Canada. Antimicrob Agents Chemother. 56(2), 639–646 (2012).
  • Wilcox MH, Shetty N, Fawley WN et al. Changing epidemiology of clostridium difficile infection following the introduction of an National ribotyping-based surveillance scheme in England. Clin/Infect Dis. 55(8), 1056–1063 (2012).
  • Woodall WH. The use of control charts in health-care and public-health surveillance. J. Qual. Technol. 32(2), 89–104 (2006).
  • Sellick JA. The use of statistical process control charts in hospital epidemiology. Infect. Control Hosp. Epidemiol. 14(11), 649–656 (1993).
  • Benneyan JC. Statistical quality control methods in infection control and hospital epidemiology, part I: introduction and basic theory. Infect. Control Hosp. Epidemiol. 19(3), 194–214 (1998).
  • Benneyan JC. Statistical quality control methods in infection control and hospital epidemiology, Part II: Chart use, statistical properties, and research issues. Infect. Control Hosp. Epidemiol. 19(4), 265–283 (1998).
  • Morton AP, Whitby M, McLaws ML et al. The application of statistical process control charts to the detection and monitoring of hospital-acquired infections. J. Qual. Clin. Pract. 21(4), 112–117 (2001).
  • Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. J. Roy. Stat. Soc. Ser. A. 164(1), 61–72 (2001).
  • Huang SS, Yokoe DS, Stelling J et al. Automated detection of infectious disease outbreaks in hospitals: a retrospective cohort study. PLoS Med. 7(2), e1000238 (2010).
  • Fawley WN, Wilcox MH, Clostridium difficile Ribotyping Network for England and Northern Ireland. An enhanced DNA fingerprinting service to investigate potential Clostridium difficile infection case clusters sharing the same PCR ribotype. J. Clin. Microbiol. 49(12), 4333–4337 (2011).
  • Didelot X, Eyre DW, Cule ML et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 13(12), R118 (2012).
  • Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RLP, Donskey CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 45(8), 992–998 (2007).
  • Clabots CR, Johnson S, Olson MM, Peterson LR, Gerding DN. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J. Infect. Dis. 166(3), 561–567 (1992).
  • Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am. J. Med. 100(1), 32–40 (1996).
  • Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW, Kuijper EJ. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro. Surveill. 18(4), 20381 (2013).
  • Gürtler V. Typing of Clostridium difficile strains by PCR-amplification of variable length 16S-23S rDNA spacer regions. J. Gen. Microbiol. 139(12), 3089–3097 (1993).
  • Kristjansson M, Samore MH, Gerding DN et al. Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains. J. Clin. Microbiol. 32(8), 1963–1969 (1994).
  • Clabots CR, Johnson S, Bettin KM et al. Development of a rapid and efficient restriction endonuclease analysis typing system for Clostridium difficile and correlation with other typing systems. J. Clin. Microbiol. 31(7), 1870–1875 (1993).
  • Griffiths D, Fawley W, Kachrimanidou M et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 48(3), 770–778 (2010).
  • Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J. Clin. Microbiol. 26(11), 2465–2466 (1988).
  • Killgore G, Thompson A, Johnson S et al. Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J. Clin. Microbiol. 46(2), 431–437 (2008).
  • Tenover FC, Akerlund T, Gerding DN et al. Comparison of strain typing results for Clostridium difficile isolates from North America. J. Clin. Microbiol. 49(5), 1831–1837 (2011).
  • Indra A, Huhulescu S, Schneeweis M et al. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J. Med. Microbiol. 57(Pt 11), 1377–1382 (2008).
  • Black SR, Weaver KN, Jones RC et al. Clostridium difficile outbreak strain BI is highly endemic in Chicago area hospitals. Infect. Control Hosp. Epidemiol. 32(9), 897–902 (2011).
  • Bauer MP, Notermans DW, van Benthem BH et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 377(9759), 63–73 (2011).
  • Marsh JW, Arora R, Schlackman JL, Shutt KA, Curry SR, Harrison LH. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J. Clin. Microbiol. 50(12), 4078–4082 (2012).
  • Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J. Med. Microbiol. 61(Pt 1), 49–56 (2012).
  • Broukhanski G, Low DE, Pillai DR. Modified multiple-locus variable-number Ttndem-repeat analysis for rapid identification and typing of Clostridium difficile during institutional outbreaks. J. Clin. Microbiol. 49(5), 1983–1986 (2011).
  • van den Berg RJ, Schaap I, Templeton KE, Klaassen CHW, Kuijper EJ. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J. Clin. Microbiol. 45(3), 1024–1028 (2007).
  • Manzoor SE, Tanner HE, Marriott CL et al. Extended multilocus variable-number tandem-repeat analysis of Clostridium difficile correlates exactly with ribotyping and enables identification of hospital transmission. J. Clin. Microbiol. 49(10), 3523–3530 (2011).
  • Wei HL, Kao CW, Wei SH, Tzen JTC, Chiou CS. Comparison of PCR ribotyping and multilocus variable-number tandem-repeat analysis (MLVA) for improved detection of Clostridium difficile. BMC Microbiol. 11, 217 (2011).
  • Sebaihia M, Wren BW, Mullany P et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38(7), 779–786 (2006).
  • Jolley KA, Hill DMC, Bratcher HB et al. Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid Web-based analysis methods. J. Clin. Microbiol. 50(9), 3046–3053 (2012).
  • Reuter S, Harrison TG, Köser CU et al. A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak. BMJ Open. 3(1), e002175 (2013).
  • Köser CU, Holden MTG, Ellington MJ et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 366(24), 2267–2275 (2012).
  • Snitkin ES, Zelazny AM, Thomas PJ et al. Tracking a hospital outbreak of carbapenem resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4(148), 148ra116 (2012).
  • Walker TM, Ip CL, Harrell RH et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13(2), 137–146 (2013).
  • Bryant JM, Grogono DM, Greaves D et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381(9877), 1551–1560 (2013).
  • Harris SR, Feil EJ, Holden MTG et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327(5964), 469–474 (2010).
  • Harris SR, Cartwright EJ, Török ME et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect. Dis. 13(2), 130–136 (2013).
  • Eckert C, Vromman F, Halkovich A, Barbut F. Multilocus variable-number tandem repeat analysis: a helpful tool for subtyping French Clostridium difficile PCR ribotype 027 isolates. J. Med. Microbiol. 60(Pt 8), 1088–1094 (2011).
  • Loman NJ, Constantinidou C, Chan JZM et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol. 10(9), 599–606 (2012).
  • Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13(9), 601–612 (2012).
  • Wilson DJ. Insights from genomics into bacterial pathogen populations. PLoS Pathog. 8(9), e1002874 (2012).
  • Bryant JM, Schürch AC, van Deutekom H et al. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect. Dis. 13(1), 110 (2013).
  • Golubchik T, Batty EM, Miller RR et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLOS ONE 8(5), e61319 (2013).
  • Eyre DW, Walker AS, Freeman J et al. Short-term genome stability of serial Clostridium difficile ribotype 027 isolates in an experimental gut model and recurrent human disease. PLOS ONE. 8(5), e63540 (2013).
  • Muto CA. Asymptomatic Clostridium difficile colonization: is this the tip of another iceberg? Clin. Infect. Dis. 45(8), 999–1000 (2007).
  • Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003).
  • Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29(8), 1969–1973 (2012).
  • Lawley TD, Croucher NJ, Yu L et al. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J. Bacteriol. 191(17), 5377–5386 (2009).
  • Louie TJ, Emery J, Krulicki W, Byrne B, Mah M. OPT-80 eliminates Clostridium difficile and is sparing of bacteroides species during treatment of C. difficile infection. Antimicrob. Agents Chemother. 53(1), 261–263 (2009).
  • Orton RJ, Wright CF, Morelli MJ et al. Observing micro-evolutionary processes of viral populations at multiple scales. Phil. Trans. R. Soc. B. 368(1614), 20120203 (2013).
  • He M, Sebaihia M, Lawley TD et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl Acad. Sci. USA. 107(16), 7527–7532 (2010).
  • Jolley KA, Maiden MC. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. Euro. Surveill. 18(4), 20379 (2013).
  • Eyre DW, Walker AS, Griffiths D et al. Clostridium difficile Mixed Infection and Reinfection. J. Clin. Microbiol. 50(1), 142–144 (2012).
  • Broukhanski G, Simor A, Pillai DR. Defining criteria to interpret multilocus variable-number tandem repeat analysis to aid Clostridium difficile outbreak investigation. J. Med. Microbiol. 60(Pt 8), 1095–1100 (2011).
  • Tanner HE, Hardy KJ, Hawkey PM. Coexistence of multiple multilocus variable-number tandem-repeat analysis subtypes of Clostridium difficile PCR ribotype 027 strains within fecal specimens. J. Clin. Microbiol. 48(3), 985–987 (2010).
  • van den Berg RJ, Ameen HA, Furusawa T, Claas EC, van der Vorm ER, Kuijper EJ. Coexistence of multiple PCR-ribotype strains of Clostridium difficile in faecal samples limits epidemiological studies. J Med Microbiol. 54(Pt 2), 173–179 (2005).
  • Wroblewski D, Hannett GE, Bopp DJ et al. Rapid molecular characterization of Clostridium difficile and assessment of populations of C. difficile in stool specimens. J. Clin. Microbiol. 47(7), 2142–2148 (2009).
  • Eyre DW, Cule ML, Griffiths D et al. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput Biol. 9(5), e1003059 (2013).
  • Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics 175(3), 1251–1266 (2007).
  • García Álvarez L, Aylin P, Tian J et al. Data linkage between existing healthcare databases to support hospital epidemiology. J. Hosp. Infect. 79(3), 231–235 (2011).
  • Blackburn RM, Henderson KL, Minaji M, Muller-Pebody B, Johnson AP, Sharland M. Exploring the epidemiology of hospital-acquired bloodstream infections in children in England (January 2009–March 2010) by linkage of national hospital admissions and microbiological databases. J. Ped. Infect. Dis. 1(4), 284–292 (2012).
  • Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control. 36(5), 309–332 (2008).
  • Hacek DM, Cordell RL, Noskin GA, Peterson LR. Computer-assisted surveillance for detecting clonal outbreaks of nosocomial infection. J. Clin. Microbiol. 42(3), 1170–1175 (2004).
  • Wright M-O, Perencevich EN, Novak C, Hebden JN, Standiford HC, Harris AD. Preliminary assessment of an automated surveillance system for infection control. Infect. Control Hosp. Epidemiol. 25(4), 325–332 (2004).
  • Brossette SE, Hacek DM, Gavin PJ et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am. J. Clin. Pathol. 125(1), 34–39 (2006).
  • Dubberke ER, Nyazee HA, Yokoe DS et al. Implementing automated surveillance for tracking Clostridium difficileinfection at multiple healthcare facilities. Infect. Control Hosp. Epidemiol. 33(3), 305–308 (2012).
  • van Mourik MSM, Troelstra A, van Solinge WW, Moons KGM, Bonten MJM. Automated surveillance for healthcare-associated infections: opportunities for improvement. Clin. Infect. Dis. 57(1), 85–93 (2013).
  • Lin MY, Hota B, Khan YM et al. Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA. 304(18), 2035–2041 (2010).
  • Stamm AM, Bettacchi CJ. A comparison of 3 metrics to identify health care-associated infections. Am. J. Infect Control. 40(8), 688–691 (2012).
  • Halpin H, Shortell SM, Milstein A, Vanneman M. Hospital adoption of automated surveillance technology and the implementation of infection prevention and control programs. Am. J. Infect Control. 39(4), 270–276 (2011).
  • Loo VG, Bourgault A-M, Poirier L et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med. 365(18), 1693–1703 (2011).
  • Leal J, Laupland KB. Validity of electronic surveillance systems: a systematic review. J. Hosp. Infect. 69(3), 220–229 (2008).
  • Trick WE. Decision making during healthcare-associated infection surveillance: a rationale for automation. Clin Infect Dis. 57(3), 434–440 (2013).
  • Mellmann A, Friedrich AW, Rosenkötter N et al. Automated DNA sequence-based early warning system for the detection of methicillin-resistant Staphylococcus aureus outbreaks. PLoS Med. 3(3), e33 (2006).
  • Morelli MJ, Thébaud G, Chadœuf J, King DP, Haydon DT, Soubeyrand S. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8(11), e1002768 (2012).
  • Jombart T, Eggo RM, Dodd PJ, Balloux F. Reconstructing disease outbreaks from genetic data: a graph approach. Heredity. 106(2), 383–390 (2010).
  • Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5(9), e1000520 (2009).
  • Loman NJ, Constantinidou C, Christner M et al. A Culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4outbreak of Shiga-toxigenic Escherichia coli. JAMA 309(14), 1502–1510 (2013).
  • Reuter S, Ellington MJ, Cartwright EJP et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med. (2013) (Epub ahead of print).
  • Rohde H, Qin J, Cui Y et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl J. Med. 365(8), 718–724 (2011).
  • Rasko DA, Webster DR, Sahl JW et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 365(8), 709–717 (2011).
  • Haustein T, Gastmeier P, Holmes A et al. Use of benchmarking and public reporting for infection control in four high-income countries. Lancet Infect. Dis. 11(6), 471–481 (2011).
  • O’Brien TF, Stelling J. Integrated multilevel surveillance of the world’s infecting microbes and their resistance to antimicrobial agents. Clin. Microbiol. Rev. 24(2), 281–295 (2011).
  • Stabler RA, Dawson LF, Valiente E et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLOS One. 7(3), e31559 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.