204
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Current status and future prospects of using advanced computer-based methods to study bacterial colonial morphology

, , , &
Pages 207-218 | Received 01 Oct 2015, Accepted 17 Nov 2015, Published online: 09 Dec 2015

References

•• First publication of showing that colonies are acting as multicellular organisms.

  • Shapiro JA, Dworkin M. Bacteria as multicellular organisms. Oxford (UK): Oxford University Press; 1997.
  • Wimpenny JWT. The growth and form of bacterial colonies. J Gen Microbiol. 1979;114(2):483–486.
  • Dunny GM, Brickman TJ, Dworkin M. Multicellular behavior in bacteria: communication, cooperation, competition and cheating. Bioessays. 2008;30(4):296–298.
  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, et al. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2006;2(10):e135.
  • Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol. 2006;4(4):249–258.
  • Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci. 2003;100(Suppl 2):14549–14554.
  • Davey HM. Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol. 2011;77(16):5571–5576.
  • Jervøe-Storm PM, Koltzscher M, Falk W, et al. Comparison of culture and real-time PCR for detection and quantification of five putative periodontopathogenic bacteria in subgingival plaque samples. J Clin Periodontol. 2005;32(7):778–783.
  • Urbán E, Terhes G, Radnai M, et al. Detection of periodontopathogenic bacteria in pregnant women by traditional anaerobic culture method and by a commercial molecular genetic method. Anaerobe. 2010;16(3):283–288.
  • Shapiro JA. Bacteria as multicellular organisms. Sci Am. 1988;258(6):82–89.
  • Shapiro JA. Pattern and control in bacterial colony development. Sci Prog. 1992;76(301–302):399–424.
  • Wimpenny JWT, Lewis MWA. Growth and respiration of bacterial colonies. J Gen Microbiol. 1977;103(NOV):9–18.
  • Cohen I, Golding I, Kozlovsky Y, et al. Continuous and discrete models of cooperation in complex bacterial colonies. Fractals. 1999;7(3):235–247.
  • Peters AC, Wimpenny JWT, Coombs JP. Oxygen profiles in, and in the agar beneath, colonies of Bacillus-cereus, Staphylococcus-albus and Escherichia-coli. J Gen Microbiol. 1987;133:1257–1263.
  • Pipe LZ, Grimson MJ. Spatial-temporal modelling of bacterial colony growth on solid media. Mol Biosyst. 2008;4(3):192–198.
  • Wimpenny JWT. Responses of microorganisms to physical and chemical gradients. Philos Trans R Soc Lond B Biol Sci. 1982;297(1088):497–515.
  • Ben-Jacob E, Cohen I, Levine H. Cooperative self-organization of microorganisms. Adv Phys. 2000;49(4):395–554.
  • Kawasaki K, Mochizuki A, Matsushita M, et al. Modeling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol. 1997;188(2):177–185.
  • Lacasta AM, Cantalapiedra IR, Auguet CE, et al. Modeling of spatiotemporal patterns in bacterial colonies. Phys Rev E. 1999;59(6):7036–7041.
  • Possé B, De Zutter L, Heyndrickx M, et al. Quantitative isolation efficiency of O26, O103, O111, O145 and O157 STEC serotypes from artificially contaminated food and cattle faeces samples using a new isolation protocol. J Appl Microbiol. 2008;105(1):227–235.
  • Possé B, De Zutter L, Heyndrickx M, et al. Novel differential and confirmation plating media for Shiga toxin-producing Escherichia coli serotypes O26, O103, O111, O145 and sorbitol-positive and-negative O157. FEMS Microbiol Lett. 2008;282(1):124–131.
  • Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17(9):406–413.
  • Brugger SD, Baumberger C, Jost M, et al. Automated counting of bacterial colony forming units on agar plates. Plos One. 2012;7(3):e33695.
  • Bae EW, Aroonnual A, Bhunia AK, et al. System automation for a bacterial colony detection and identification instrument via forward scattering. Meas Sci Technol. 2009;20(1):015802.
  • Chiang P-J, Tseng M-J, He Z-S, et al. Automated counting of bacterial colonies by image analysis. J Microbiol Methods. 2015;108:74–82.
  • Ogawa H, Nasu S, Takeshige M, et al. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis. J Microbiol Methods. 2012;91(3):420–428.
  • Clarke ML, Burton RL, Hill AN, et al. Low-cost, high-throughput, automated counting of bacterial colonies. Cytometry A. 2010;77A(8):790–797.
  • Mertens L, Van Derlinden E, Van Impe JF. A novel method for high-throughput data collection in predictive microbiology: optical density monitoring of colony growth as a function of time. Food Microbiol. 2012;32(1):196–201.
  • Yoon S-C, Shin T-S, Heitschmidt GW, et al. Hyperspectral imaging using a color camera and its application for pathogen detection. Image Processing: Machine Vision Applications Viii, 9405, San Francisco, CA; 2015.

• The most advanced method of digital imaging of colony by hyperspectral imaging.

  • Yoon S-C, Shin T-S, Park B, et al. Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates. Image Processing: Machine Vision Applications Vii, 9024, San Francisco, CA; 2014.

• The most advanced method of digital imaging of colony by hyperspectral imaging.

  • Barber P, Vojnovic B, Kelly J, et al. An automated colony counter utilising a compact Hough transform. Proceedings of Medical Image Understanding and Analysis, MIUA2000, London; 2000. p. 41–44.
  • de Almeida VE, da Costa GB, Fernandes DDD, et al. Using color histograms and SPA-LDA to classify bacteria. Anal Bioanal Chem. 2014;406(24):5989–5995.
  • Sousa AM, Machado I, Nicolau A, et al. Improvements on colony morphology identification towards bacterial profiling. J Microbiol Methods. 2013;95(3):327–335.
  • Sousa AM, Pereira MO, Lourenço A. MorphoCol: an ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies. J Biomed Inform. 2015;55:55–63.

• Explores the new trend of digital/quantitative database of bacterial colony images.

  • Garry E, Ouattara G, Williams P, et al. Enumerating chromogenic agar plates using the color Qcount automated colony counter. J Rapid Methods Autom Microbiol. 2009;17(1):46–54.
  • Andreini P, Bonechi S, Bianchini M, et al. Automatic image classification for the urinoculture screening. In: Neves-Silva R, Jain LC, Howlett RJ, editors. Intelligent decision technologies. Cham: Springer International Publishing; 2015. p. 31–42.
  • Liu GY, Essex A, Buchanan JT, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202(2):209–215.
  • Zughaier SM, Ryley HC, Jackson SK. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect Immun. 1999;67(2):908–913.
  • Lau GW, Ran H, Kong F, et al. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004;72(7):4275–4278.
  • Kase JA, Maounounen-Laasri A, Son I, et al. Comparison of eight different agars for the recovery of clinically relevant non-O157 Shiga toxin-producing Escherichia coli from baby spinach, cilantro, alfalfa sprouts and raw milk. Food Microbiol. 2015;46:280–287.
  • Odds FC, Bernaerts R. Chromagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol. 1994;32(8):1923–1929.
  • Perry JD, Davies A, Butterworth LA, et al. Development and evaluation of a chromogenic agar medium for methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2004;42(10):4519–4523.
  • Sturod K, Dahle UR, Berg ES, et al. Evaluation of the ability of four EBSL-screening media to detect ESBL-producing Salmonella and Shigella. BMC Microbiol. 2014;14:9.
  • Díaz L, Hoare A, Soto C, et al. Changes in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe. 2015;33:25–32.
  • Banada PP, Huff K, Bae E, et al. Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens Bioelectron. 2009;24(6):1685–1692.
  • Tang Y, Kim H, Singh AK, et al. Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS ONE. 2014;9(8):e105272.
  • Bae E, Banada PP, Huff K, et al. Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory. Appl Opt. 2007;46(17):3639–3648.

• First modeling effort to explain the ELS phenomena from bacterial colony.

  • Banada PP, Guo SL, Bayraktar B, et al. Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosens Bioelectron. 2007;22(8):1664–1671.

•• First introduction of ELS technology on differentiation of Listeria colony.

  • Rösch P, Harz M, Krause M, et al. Fast and reliable identification of microorganisms by means of Raman spectroscopy. In: European Conference on Biomedical Optics. International Society for Optics and Photonics; 2007. p. 66331A-66331A-66339.
  • Maquelin K, Choo-Smith L-P, van Vreeswijk T, et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem. 2000;72(1):12–19.

•• Utilizing Raman spectroscopy for interrogation of colony heterogeneity. Important algorithms are also introduced to remove the signal from underlying agar medium.

  • Maquelin K, Hoogenboezem T, Jachtenberg J-W, et al. Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae. Microbiology. 2009;155(6):2068–2077.
  • Sowoidnich K, Kronfeldt H-D. Fluorescence rejection by shifted excitation Raman difference spectroscopy at multiple wavelengths for the investigation of biological samples. ISRN Spectrosc. 2012;2012:11.
  • Gaus K, Rösch P, Petry R, et al. Classification of lactic acid bacteria with UV‐resonance Raman spectroscopy. Biopolymers. 2006;82(4):286–290.
  • Beier BD, Berger AJ. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst. 2009;134(6):1198–1202.
  • Lieber CA, Ellis DL, Billheimer DD, et al. Handheld confocal Raman microspectrometer for in-vivo skin cancer measurement. Biomedical Optics 2004. International Society for Optics, and Photonics, San Jose, CA; 2004.
  • Lieber CA, Mahadevan-Jansen A. Development of a handheld Raman microspectrometer for clinical dermatologic applications. Opt Express. 2007;15(19):11874–11882.
  • Harz M, Rösch P, Peschke K-D, et al. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130(11):1543–1550.
  • Samek O, Al-Marashi JFM, Telle HH. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys Lett. 2010;7(5):378–383.
  • Berger AJ, Zhu Q. Identification of oral bacteria by Raman microspectroscopy. J Mod Opt. 2003;50(15–17):2375–2380.
  • Jehlička J, Edwards HGM, Oren A. Raman spectroscopy of microbial pigments. Appl Environ Microbiol. 2014;80(11):3286–3295.
  • Samek O, Telle H, Harris L, et al. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys Lett. 2008;5(6):465.
  • Neugebauer U, Trenkmann S, Bocklitz T, et al. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. J Biophotonics. 2014;7(3–4):232–240.
  • Bayraktar B, Banada PP, Hirleman ED, et al. Feature extraction from light-scatter patterns of Listeria colonies for identification and classification. J Biomed Opt. 2006;11(3):034006-034006-034008.

•• First report of quantitative analysis of ELS patterns.

  • Bae E, Bai N, Aroonnual A, et al. Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns. J Biomed Opt. 2010;15(4):045001.
  • Bhunia AK, Nanduri V, Bae E, et al. Biosensors, foodborne pathogen detection. Hoboken, NJ: John Wiley & Sons, Inc.; 2009.
  • Bae E, Patsekin V, Rajwa B, et al. Development of a microbial high-throughput screening instrument based on elastic light scatter patterns. Rev Sci Instrum. 2012;83(4):044304.
  • Bae E, Ying D, Kramer D, et al. Portable bacterial identification system based on elastic light scatter patterns. J Biol Eng. 2012;6(1):12.
  • Marcoux P, Dupoy M, Cuer A, et al. Optical forward-scattering for identification of bacteria within microcolonies. Appl Microbiol Biotechnol. 2014;98(5):1–12.
  • Bae E, Bai N, Aroonnual A, et al. Label-free identification of bacterial microcolonies via elastic scattering. Biotechnol Bioeng. 2011;108(3):637–644.
  • Minoni U, Signoroni A, Nassini G. On the application of optical forward-scattering to bacterial identification in an automated clinical analysis perspective. Biosens Bioelectron. 2015;68:536–543.
  • Pan W, Zhao J, Chen Q. Classification of foodborne pathogens using near infrared (NIR) laser scatter imaging system with multivariate calibration. Sci Rep. 2015;5:9524.
  • Kim H, Doh I-J, Bhunia AK, et al. Scalar diffraction modeling of multispectral forward scatter patterns from bacterial colonies. Opt Express. 2015;23(7):8545–8554.
  • Huff K, Aroonnual A, Littlejohn AEF, et al. Light-scattering sensor for real-time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate. Microb Biotechnol. 2012;5(5):607–620.
  • Singh AK, Bettasso AM, Bae E, et al. Laser optical sensor, a label-free on-plate salmonella enterica colony detection tool. mBio. 2014;5(1):e01019-13.
  • He Y, Reed S, Bhunia AK, et al. Rapid identification and classification of Campylobacter spp. using laser optical scattering technology. Food Microbiol. 2015;47:28–35.
  • Singh AK, Sun X, Bai X,et al. Label-free, non-invasive light scattering sensor for rapid screening of Bacillus colonies.J Microbiol Methods.2015;109:56–66.
  • Motlagh H, Giordano A, Waters C et al. Applying elastic light scatter (ELS) technology (BARDOT) to rapidly integrate wound organism classification and patient triaging. In: The symposium on advanced wound care; Atlanta, GA; 2012.

• Reported application of the ELS on real clinical samples and classifying the source of the wound isolates.

  • Slone WL, Waters CL, Corum L, et al. Integrating optical scatter technology to define microbial pathogenesis in wounds. In: Symposium on advanced wound care; Las Vegas, NV; 2011.
  • Slone WL, Bae E, Waters CL, et al. Applying optical scatter technology (BARDOT) to rapidly unmask and map resistant profiles in wound surveillance. In: Symposium on advanced wound care; Las Vegas, NV; 2011.
  • Chen B, Gong H, Zhang X, et al. Laser imaging for rapid microbial source tracking. Int J Comput Biol Drug Des. 2010;3(3):177–186.
  • Robinson JP, Rajwa BP, Bae E, et al. Using scattering to identify bacterial pathogens. Opt Photonics News. 2011;22(10):20–27.
  • Proctor RA, Peters G. Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis. 1998;27:419–422.
  • Proctor RA, Von Eiff C, Kahl BC, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4(4):295–305.
  • Liu T-T, Lin Y-H, Hung C-S, et al. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS ONE. 2009;4(5):e5470.
  • King LJ. Combating the triple threat: the need for a one health approach. Microbiol Spectr. 2013;1(1):OH-0012-2012.
  • Reperant LA, Cornaglia G, Osterhaus AD. The importance of understanding the human–animal interface. In: Mackenzie JS, Jeggo M, Daszak P, et al., editors. One health: the human-animal-environment interfaces in emerging infectious diseases. Berlin: Springer; 2013. p. 49–81.
  • Álvarez-Barrientos A, Arroyo J, Cantón R, et al. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev. 2000;13(2):167–195.
  • Ahmed WM, Bayraktar B, Bhunia AK, et al. Classification of bacterial contamination using image processing and distributed computing. IEEE J Biomed Health Inform. 2013;17(1):232–239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.