130
Views
26
CrossRef citations to date
0
Altmetric
Review

Mechanisms of resistance to β-lactams in some common Gram-negative bacteria causing nosocomial infections

, , &
Pages 915-922 | Published online: 10 Jan 2014

References

  • Jones RN. Resistance patterns among nosocomial pathogens, trends over the past few years. Chest 119(Suppl. 2), S397–S404 (2001).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 289(1036), 321–331 (1980).
  • Helfand MS, Bonomo RA. β-lactamases: a survey of protein diversity. Curr. Drug Targets Infect. Disord. 3(1), 9–23 (2003).
  • Jacoby GA, Munoz-Price LS. The new β-lactamases. N. Engl. J. Med. 352(4), 380–391 (2005).
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46(1), 1–11 (2002).
  • Winokur PL, Canton R, Casellas JM, Legarkis N. Variations in the prevalence of strains expressing an extended-spectrum β-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin. Infect. Dis. 32(Suppl. 2), S94–S103 (2001).
  • Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 56(1), 52–59 (2005).
  • Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48(1), 1–14 (2004).
  • Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34(5), 634–640 (2002).
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microb. Rev. 14(4), 933–951 (2001).
  • Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8(6), 321–331 (2002).
  • Walsh T, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18(2), 306–325 (2005).
  • Hooper DC. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin. Infect. Dis. 40(12), 1811–1817 (2005).
  • Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56(1), 20–51 (2005).
  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44(12), 3322–3327 (2000).
  • Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other Gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 23(7), 916–924 (2003).
  • Hooper DC. Quinolone mode of action. Drugs 49(Suppl. 2), 10–15 (1995).
  • Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb. Drug Resist. 4(4), 257–261 (1998).
  • Poole K. Resistance to β-lactam antibiotics. Cell. Mol. Life Sci. 61(17), 2200–2223 (2004).
  • Rhomberg P, Jones RN, Mutnick A. Geographic variations and trends in key bacteremic pathogen resistance (R): report from the SENTRY Antimicrobial Surveillance Program (1997–2001). Proceedings of the 42nd Interscience Congress of Antimicrobial Agents and Chemotherapy. CA, USA (2002).
  • Schiappa DA, Hayden MK, Matushek MG et al. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J. Infect. Dis. 174(3), 529–536 (1996).
  • Paterson DL. Recommendations for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin. Microbiol. Infect. 6(9), 460–463 (2000).
  • Livermore DM, Sefton AM, Scott GM. Properties and potential of ertapenem. J. Antimicrob. Chemother. 52(3), 331–344 (2003).
  • Livermore DM. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8(4), 557–584 (1995).
  • Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. J. Am. Med. Assoc. 289(7), 885–888 (2003).
  • Chow JW, Fine MJ, Shlaes DM et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Intern. Med. 115, 585–590 (1991).
  • Jones RN, Varnam DJ. Antimicrobial activity of broad spectrum agents tested against Gram-negative bacilli resistant to ceftazidime: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Diagn. Microbiol. Infect. Dis. 44(4), 379–382 (2002).
  • Sanders WE Jr, Tenney JH, Kessler RE. Efficacy of cefepime in the treatment of infections due to multiply resistant Enterobacter species. Clin. Infect. Dis. 23(3), 454–461 (1996).
  • Norrby SR. Carbapenems. Med. Clin. North Am. 79(4), 745–759 (1995).
  • Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 32(Suppl. 2), S146–S155 (2001).
  • Fink MP, Snydman DR, Niederman MS et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem–cilastatin. The Severe Pneumonia Study Group. Antimicrob. Agents Chemother. 38(3), 547–557 (1994).
  • Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 36(9), 1847–1851 (1992).
  • Li XZ, Nikaido H, Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39(9), 1948–1953 (1995).
  • Kohler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother. 43(2), 424–427 (1999).
  • Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406(6799), 959–964 (2000).
  • Zhanel GG, Karlowsky JA, Saunders MH et al. Development of multiple-antibiotic-resistant (Mar) mutants of Pseudomonas aeruginosa after serial exposure to fluoroquinolones. Antimicrob. Agents Chemother. 39(2), 489–495 (1995).
  • D’Agata EM. Rapidly rising prevalence of nosocomial multi-drug resistant, Gram-negative bacilli: a 9-year surveillance study. Infect. Control Hosp. Epidemiol. 25(10), 842–846 (2004).
  • Andrade SS, Jones RN, Gales AC, Sader HS. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Antimicrob. Chemother. 52(1), 140–141 (2003).
  • Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am. J. Med. 87(5), 540–546 (1989).
  • Acharya A, Paterson D. Pseudomonas aeruginosa. In: Antimicrobial Therapy and Vaccines (Volume 1: Microbes). Yu V (Ed.). Apple Tree Productions, LLC, NY, USA, 549–562 (2002).
  • Friedland I, Stinson L, Ikaiddi M, Harm S, Woods GL. Phenotypic antimicrobial resistance patterns in Pseudomonas aeruginosa and Acinetobacter: results of a Multicenter Intensive Care Unit Surveillance Study, 1995–2000. Diagn. Microbiol. Infect. Dis. 45(4), 245–250 (2003).
  • Gales AC, Jones RN, Forward KR, Linares J, Sader HS, Verhoef J. Emerging importance of multi-drug resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997–1999). Clin. Infect. Dis. 32(Suppl. 2), S104–S113 (2001).
  • Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob. Agents Chemother. 47(5), 1681–1688 (2003).
  • Urban C, Segal-Maurer S, Rahal JJ. Considerations in control and treatment of nosocomial infections due to multi-drug resistant Acinetobacter baumannii. Clin. Infect. Dis. 36(10), 1268–1274 (2003).
  • Fernandez-Cuenca F, Martinez-Martinez L, Conejo MC, Ayala JA, Perea EJ, Pascual A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 51(3), 565–574 (2003).
  • Betriu C, Rodriguez-Avial I, Sanchez BA, Gomez M, Alvarez J, Picazo JJ. In vitro activities of tigecycline (GAR-936) against recently isolated clinical bacteria in Spain. Antimicrob. Agents Chemother. 46(3), 892–895 (2002).
  • Higgins PG, Wisplinghoff H, Stefanik D, Seifert H. In vitro activities of the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with β-lactams against epidemiologically characterized multi-drug resistant Acinetobacter baumannii strains. Antimicrob. Agents Chemother. 48(5), 1586–1592 (2004).
  • Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int. J. Antimicrob. Agents 21(1), 58–62 (2003).
  • Jellison TK, Mckinnon PS, Rybak MJ. Epidemiology, resistance, and outcomes of Acinetobacter baumannii bacteremia treated with imipenem-cilastatin or ampicillin-sulbactam. Pharmacotherapy 21(2), 142–148 (2001). Winslow R. Orphan rescue: how small firms sometimes hit big with drug discards. Wall St J. August 11 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.