106
Views
21
CrossRef citations to date
0
Altmetric
Review

Development of effective therapies against West Nile virus infection

Pages 931-944 | Published online: 10 Jan 2014

References

  • Smithburn KC, Hughes TP, Burke AW, Paul JH. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 20, 471–492 (1940).
  • Bunning ML, Bowen RA, Cropp B et al. Experimental infection of horses with West Nile virus and their potential to infect mosquitoes and serve as amplifying hosts. Ann. NY Acad. Sci. 951, 338–339 (2001).
  • Gould LH, Fikrig E. West Nile virus: a growing concern? J. Clin. Invest. 113, 1102–1107 (2004).
  • Higgs S, Schneider BS, Vanlandingham DL, Klingler KA, Gould EA. Nonviremic transmission of West Nile virus. Proc. Natl Acad. Sci. USA 102, 8871–8874 (2005).
  • Mumcuoglu KY, Banet-Noach C, Malkinson M, Shalom U, Galun R. Argasid ticks as possible vectors of West Nile virus in Israel. Vector Borne Zoonotic Dis. 5, 65–71 (2005).
  • Hutcheson HJ, Gorham CH, Machain Williams C et al. Experimental transmission of West Nile virus (Flaviviridae: flavivirus) by Carios capensis ticks from North America. Vector Borne Zoonotic Dis. 5, 293–295 (2005).
  • Lawrie CH, Uzcategui NY, Gould EA, Nuttall PA. Ixodid and argasid tick species and west nile virus. Emerg. Infect. Dis. 10, 653–657 (2004).
  • Hubalek Z, Halouzka J. West Nile fever – a re-emerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5, 643–650 (1999).
  • Komar N. West Nile virus: epidemiology and ecology in North America. Adv. Virus Res. 61, 185–234 (2003).
  • Huhn GD, Austin C, Langkop C et al. The emergence of West Nile Virus during a large outbreak in Illinois in 2002. Am. J. Trop. Med. Hyg. 72, 768–776 (2005).
  • Bakri SJ, Kaiser PK. Ocular manifestations of West Nile virus. Curr. Opin. Ophthalmol. 15, 537–540 (2004).
  • Sejvar JJ, Haddad MB, Tierney BC et al. Neurologic manifestations and outcome of West Nile virus infection. J. Am. Med. Assoc. 290, 511–515 (2003).
  • Tsai TF, Popovici F, Cernescu C, Campbell GL, Nedelcu NI. West Nile encephalitis epidemic in southeastern Romania. Lancet 352, 767–771 (1998).
  • Mostashari F, Bunning ML, Kitsutani PT et al. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358, 261–264 (2001).
  • Nash D, Mostashari F, Fine A et al. The outbreak of West Nile virus infection in the New York City area in 1999. N. Engl. J. Med. 344, 1807–1814 (2001).
  • Chowers MY, Lang R, Nassar F et al. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg. Infect. Dis. 7, 675–678 (2001).
  • Han LL, Popovici F, Alexander JP Jr et al. Risk factors for West Nile virus infection and meningoencephalitis, Romania, 1996. J. Infect. Dis. 179, 230–233 (1999).
  • Pealer LN, Marfin AA, Petersen LR et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med. 349, 1236–1245 (2003).
  • Tobler LH, Bianco C, Glynn SA et al. Detection of West Nile virus RNA and antibody in frozen plasma components from a voluntary market withdrawal during the 2002 peak epidemic. Transfusion 45, 480–486 (2005).
  • Busch MP, Tobler LH, Saldanha J et al. Analytical and clinical sensitivity of West Nile virus RNA screening and supplemental assays available in 2003. Transfusion 45, 492–499 (2005).
  • Petersen LR, Epstein JS. Problem solved? West Nile virus and transfusion safety. N. Engl. J. Med. 353, 516–517 (2005).
  • Dodd RY. Emerging infections, transfusion safety, and epidemiology. N. Engl. J. Med. 349, 1205–1206 (2003).
  • Stramer SL, Fang CT, Foster GA, Wagner AG, Brodsky JP, Dodd RY. West Nile virus among blood donors in the United States, 2003 and 2004. N. Engl. J. Med. 353, 451–459 (2005).
  • Busch MP, Caglioti S, Robertson EF et al. Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N. Engl. J. Med. 353, 460–467 (2005).
  • DeSalvo D, Roy-Chaudhury P, Peddi R et al. West Nile virus encephalitis in organ transplant recipients: another high-risk group for meningoencephalitis and death. Transplantation 77, 466–469 (2004).
  • Kumar D, Drebot MA, Wong SJ et al. A seroprevalence study of west nile virus infection in solid organ transplant recipients. Am. J. Transplant. 4, 1883–1888 (2004).
  • Kumar D, Prasad GV, Zaltzman J, Levy GA, Humar A. Community-acquired West Nile virus infection in solid-organ transplant recipients. Transplantation 77, 399–402 (2004).
  • Kleinschmidt-DeMasters BK, Marder BA, Levi ME et al. Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch. Neurol. 61, 1210–1220 (2004).
  • Kiberd BA, Forward K. Screening for West Nile virus in organ transplantation: a medical decision analysis. Am. J. Transplant. 4, 1296–1301 (2004).
  • Granwehr BP, Lillibridge KM, Higgs S et al. West Nile virus: where are we now? Lancet Infect. Dis. 4, 547–556 (2004).
  • Kapoor H, Signs K, Somsel P, Downes FP, Clark PA, Massey JP. Persistence of West Nile Virus (WNV) IgM antibodies in cerebrospinal fluid from patients with CNS disease. J. Clin. Virol. 31, 289–291 (2004).
  • Martin DA, Noga A, Kosoy O, Johnson AJ, Petersen LR, Lanciotti RS. Evaluation of a diagnostic algorithm using immunoglobulin M enzyme-linked immunosorbent assay to differentiate human West Nile Virus and St. Louis Encephalitis virus infections during the 2002 West Nile Virus epidemic in the United States. Clin. Diagn. Lab. Immunol. 11, 1130–1133 (2004).
  • Diamond MS, Sitati E, Friend L, Shrestha B, Higgs S, Engle M. Induced IgM protects against lethal West Nile Virus infection. J. Exp. Med. 198, 1–11 (2003).
  • Wong SJ, Boyle RH, Demarest VL et al. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J. Clin. Microbiol. 41, 4217–4223 (2003).
  • Wong SJ, Demarest VL, Boyle RH et al. Detection of human anti-flavivirus antibodies with a west nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol. 42, 65–72 (2004).
  • Roehrig JT, Nash D, Maldin B et al. Persistence of virus-reactive serum immunoglobulin M antibody in confirmed west nile virus encephalitis cases. Emerg. Infect. Dis. 9, 376–379 (2003).
  • Burke DS, Monath TP. Flaviviruses. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 1043–1125 (2001).
  • Lindenbach BD, Rice CM. Flaviviridae: the viruses and their replication. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 991–1041 (2001).
  • Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann. Rev. Microbiol. 44, 649–688 (1990).
  • Tassaneetrithep B, Burgess T, Granelli-Piperno A et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197(7), 823–829 (2003).
  • Chu JJ, Ng ML. Interaction of West Nile virus with alpha v. beta 3 integrin mediates virus entry into cells. J. Biol. Chem. 279, 54533–54541 (2004).
  • Kimura T, Gollins SW, Porterfield JS. The effect of pH on the early interaction of West Nile virus with P388D1 cells. J. Gen. Virol. 67, 2423–2433 (1986).
  • Gollins S, Porterfield J. The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J. Gen. Virol. 67, 1941–1950 (1986).
  • Markoff L, Chang A, Falgout B. Processing of flavivirus structural glycoproteins: stable membrane insertion of premembrane requires the envelope signal peptide. Virology 204, 526–540 (1994).
  • Falgout B, Markoff L. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J. Virol. 69, 7232–7243 (1995).
  • Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475–8481 (1997).
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).
  • Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).
  • Zhang Y, Corver J, Chipman PR et al. Structures of immature flavivirus particles. Embo. J. 22, 2604–2613 (2003).
  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ. Structure of West Nile virus. Science 302, 248 (2003).
  • Zhang W, Chipman PR, Corver J et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10(11), 907–912 (2003).
  • Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).
  • Rey FA. Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc. Natl Acad. Sci. USA 100, 6899–6901 (2003).
  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 Angstrom resolution. Nature 375, 291–298 (1995).
  • Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).
  • Roehrig JT, Staudinger LA, Hunt AR, Mathews JH, Blair CD. Antibody prophylaxis and therapy for flaviviral encephalitis infections. Ann. NY Acad. Sci. 951, 286–297 (2001).
  • Beasley DW, Barrett AD. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol. 76, 13097–13100 (2002).
  • Oliphant T, Engle M, Nybakken G et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Med. 11, 522–530 (2005).
  • Sanchez MD, Pierson TC, McAllister D et al. Characterization of neutralizing antibodies to West Nile virus. Virology 336, 70–82 (2005).
  • Li L, Barrett AD, Beasley DW. Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335, 99–105 (2005).
  • Volk DE, Beasley DW, Kallick DA, Holbrook MR, Barrett AD, Gorenstein DG. Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J. Biol. Chem. 279(37), 38755–38761 (2004).
  • Serafin IL, Aaskov JG. Identification of epitopes on the envelope (E) protein of dengue 2 and dengue 3 viruses using monoclonal antibodies. Arch. Virol. 146, 2469–2479 (2001).
  • Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).
  • Roehrig JT, Bolin RA, Kelly RG. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317–328 (1998).
  • Cecilia D, Gould EA. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70–77 (1991).
  • Wu SC, Lian WC, Hsu LC, Liau MY. Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res. 51, 173–181 (1997).
  • Lin B, Parrish CR, Murray JM, Wright PJ. Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202, 885–890 (1994).
  • Nybakken G, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis for neutralization of a therapeutic antibody against West Nile virus. Nature 437, 764–769 (2005).
  • Wu KP, Wu CW, Tsao YP et al. Structural basis of a Flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese Encephalitis virus envelope protein. J. Biol. Chem. 278(46), 46007–46013 (2003).
  • Hiramatsu K, Tadano M, Men R, Lai CJ. Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology 224, 437–445 (1996).
  • Chambers TJ, Diamond MS. Pathogenesis of flavivirus encephalitis. In: The Flaviviruses: Current Molecular Aspects of Evolution, Biology, and Disease Prevention. Chambers TJ, Monath TP (Eds). Academic Press, 273–342 (2003).
  • Marovich M, Grouard-Vogel G, Louder M et al. Human dendritic cells as targets of dengue virus infection. J. Investig. Dermatol. Symp. Proc. 6, 219–224 (2001).
  • Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA. Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J. Virol. 75, 3501–3508 (2001).
  • Ho LJ, Wang JJ, Shaio MF et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J. Immunol. 166, 1499–1506 (2001).
  • Wu SJ, Grouard-Vogel G, Sun W et al. Human skin Langerhans cells are targets of dengue virus infection. Nature Med. 6, 816–820 (2000).
  • Johnston LJ, Halliday GM, King NJ. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J. Invest. Dermatol. 114, 560–568 (2000).
  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003).
  • Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg. Infect. Dis. 7, 714–721 (2001).
  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).
  • Johnson RT, Mims GA. Pathogenesis for viral infections of the nervous system. N. Engl. J. Med. 278, 84–92 (1968).
  • Johnson RT, Mims CA. Pathogenesis of viral infections of the nervous system. N. Engl. J. Med. 278, 23–30 (1968).
  • Diamond MS, Klein RS. West Nile virus: crossing the blood–brain barrier. Nature Med. 10, 1294–1295 (2004).
  • Johnson RT. Viral Infections of the Nervous System. Raven Press, NY, USA, 433 (1982).
  • Eldadah AH, Nathanson N. Pathogenesis of West Nile Virus encephalitis in mice and rats. II. Virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. Am. J. Epidemiol. 86, 776–790 (1967).
  • Eldadah AH, Nathanson N, Sarsitis R. Pathogenesis of West Nile Virus encephalitis in mice and rats. 1. Influence of age and species on mortality and infection. Am. J. Epidemiol. 86, 765–775 (1967).
  • Leis AA, Fratkin J, Stokic DS, Harrington T, Webb RM, Slavinski SA. West Nile poliomyelitis. Lancet Infect. Dis. 3, 9–10 (2003).
  • Glass JD, Samuels O, Rich MM. Poliomyelitis due to West Nile virus. N. Engl. J. Med. 347, 1280–1281 (2002).
  • Leis AA, Stokic DS, Polk JL, Dostrow V, Winkelmann M. A poliomyelitis-like syndrome from West Nile virus infection. N. Engl. J. Med. 347, 1279–1280 (2002).
  • Shrestha B, Gottlieb DI, Diamond MS. Infection and injury of neurons by West Nile Encephalitis virus. J. Virol. 77, 13203–13213 (2003).
  • Yang JS, Ramanathan MP, Muthumani K et al. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg. Infect. Dis. 8, 1379–1384 (2002).
  • Prikhod'ko GG, Prikhod'ko EA, Pletnev AG, Cohen JI. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J. Virol. 76, 5701–5710 (2002).
  • Prikhod'ko GG, Prikhod'ko EA, Cohen JI, Pletnev AG. Infection with Langat flavivirus or expression of the envelope protein induces apoptotic cell death. Virology 286, 328–335 (2001).
  • Wang T, Fikrig E. Immunity to West Nile virus. Curr. Opin. Immunol. 16, 519–523 (2004).
  • Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile Encephalitis virus. Viral Immunol. 16, 259–278 (2003).
  • Shrestha B, Diamond MS. The role of CD8+ T cells in the control of West Nile virus infection. J. Virol. 78, 8312–8321 (2004).
  • Wang Y, Lobigs M, Lee E, Mullbacher A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J. Virol. 77, 13323–13334 (2003).
  • Wang Y, Lobigs M, Lee E, Mullbacher A. Exocytosis and Fas mediated cytolytic mechanisms exert protection from West Nile virus induced encephalitis in mice. Immunol. Cell. Biol. 82, 170–173 (2004).
  • Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for the induction of a protective antibody response against West Nile virus infection. J. Virol. 79, 7466–7477 (2005).
  • Wang T, Scully E, Yin Z et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).
  • Samuel MA, Diamond MS. Type I IFN protects against lethal West Nile Virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350–13361 (2005).
  • Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR. Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5. Mamm. Genome 6, 454–458 (1995).
  • Sangster MY, Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR. Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. J. Virol. 68, 448–452 (1994).
  • Darnell MB, Koprowski H. Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice. J. Infect. Dis. 129, 248–256 (1974).
  • Darnell MB, Koprowski H, Lagerspetz K. Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J. Infect. Dis. 129, 240–247 (1974).
  • Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA. Positional cloning of the murine flavivirus resistance gene. Proc. Natl Acad. Sci. USA 99, 9322–9327 (2002).
  • Mashimo T, Lucas M, Simon-Chazottes D et al. A nonsense mutation in the gene encoding 2´-5´-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl Acad. Sci. USA 99, 11311–11316 (2002).
  • Jackson AC. Therapy of West Nile virus infection. Can. J. Neurol. Sci. 31, 131–134 (2004).
  • Hall CB, McBride JT, Walsh EE et al. Aerosolized ribavirin treatment of infants with respiratory syncytial viral infection. A randomized double-blind study. N. Engl. J. Med. 308, 1443–1447 (1983).
  • Davis GL, Esteban-Mur R, Rustgi V et al. Interferon α-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group. N. Engl. J. Med. 339, 1493–1499 (1998).
  • McCormick JB, King IJ, Webb PA et al. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986).
  • Huggins JW, Hsiang CM, Cosgriff TM et al. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J. Infect. Dis. 164, 1119–1127 (1991).
  • McJunkin JE, Khan R, de los Reyes EC et al. Treatment of severe La Crosse encephalitis with intravenous ribavirin following diagnosis by brain biopsy. Pediatrics 99, 261–267 (1997).
  • Leyssen P, Balzarini J, De Clercq E, Neyts J. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J. Virol. 79, 1943–1947 (2005).
  • Huggins JW. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev. Infect. Dis. 11(Suppl. 4), S750–S761 (1989).
  • Crotty S, Maag D, Arnold JJ et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Med. 6, 1375–1379 (2000).
  • Day CW, Smee DF, Julander JG, Yamshchikov VF, Sidwell RW, Morrey JD. Error-prone replication of West Nile virus caused by ribavirin. Antiviral Res. 67, 38–45 (2005).
  • Jordan I, Briese T, Fischer N, Lau JY, Lipkin WI. Ribavirin inhibits west nile virus replication and cytopathic effect in neural cells. J. Infect. Dis. 182, 1214–1217 (2000).
  • Anderson JF, Rahal JJ. Efficacy of interferon α-2b and ribavirin against West Nile virus in vitro. Emerg. Infect. Dis. 8, 107–108 (2002).
  • Morrey JD, Day CW, Julander JG, Blatt LM, Smee DF, Sidwell RW. Effect of interferon-α and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir. Chem. Chemother. 15, 101–109 (2004).
  • Koff WC, Pratt RD, Elm JL Jr, Venkateshan CN, Halstead SB. Treatment of intracranial dengue virus infections in mice with a lipophilic derivative of ribavirin. Antimicrob. Agents Chemother. 24, 134–136 (1983).
  • Malinoski FJ, Hasty SE, Ussery MA, Dalrymple JM. Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys. Antiviral Res. 13, 139–149 (1990).
  • Lipsky JJ. Mycophenolate mofetil. Lancet 348, 1357–1359 (1996).
  • Nagy SE, Andersson JP, Andersson UG. Effect of mycophenolate mofetil (RS-61443) on cytokine production: inhibition of superantigen-induced cytokines. Immunopharmacology 26, 11–20 (1993).
  • Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol. Rev. 136, 5–28 (1993).
  • Ichimura H, Levy JA. Polymerase substrate depletion: a novel strategy for inhibiting the replication of the human immunodeficiency virus. Virology 211, 554–560 (1995).
  • Gong ZJ, De Meyer S, Clarysse C et al. Mycophenolic acid, an immunosuppressive agent, inhibits HBV replication in vitro. J. Viral. Hepat. 6, 229–236 (1999).
  • Neyts J, De Clercq E. Mycophenolate mofetil strongly potentiates the anti-herpesvirus activity of acyclovir. Antiviral Res. 40, 53–56 (1998).
  • Diamond MS, Zachariah M, Harris E. Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 304, 211–221 (2002).
  • Morrey JD, Smee DF, Sidwell RW, Tseng C. Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral Res. 55, 107–116 (2002).
  • Samuel CE. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183, 1–11 (1991).
  • Crance JM, Scaramozzino N, Jouan A, Garin D. Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Res. 58, 73–79 (2003).
  • Diamond MS, Roberts T, Edgil D, Lu B, Ernst J, Harris E. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J. Virol. 74, 4957–4966 (2000).
  • Diamond MS, Harris E. Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289, 297–311 (2001).
  • Fredericksen BL, Smith M, Katze MG, Shi PY, Gale M. The host response to West Nile virus infection limits spread through the activation of the interferon regulatory factor 3 pathway. J. Virol. 78, 7737–7747 (2004).
  • Lin RJ, Liao CL, Lin E, Lin YL. Blocking of the α interferon-induced Jak-Stat signaling pathway by Japanese Encephalitis Virus. J. Virol. 78, 9285–9294 (2004).
  • Jones M, Davidson A, Hibbert L et al. Dengue virus inhibits α interferon signaling by reducing STAT2 expression. J. Virol. 79, 5414–5420 (2005).
  • Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A. Inhibition of interferon signaling by dengue virus. Proc. Natl Acad. Sci. USA. 100, 14333–14338 (2003).
  • Munoz-Jordan JL, Laurent-Rolle M, Ashour J et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79, 8004–8013 (2005).
  • Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA. Analysis of adaptive mutations in kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of β interferon promoter-driven transcription. J. Virol. 78, 12225–12235 (2004).
  • Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA. Inhibition of interferon signaling by the New York 99 strain and kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J. Virol. 79, 1934–1942 (2005).
  • Best SM, Morris KL, Shannon JG et al. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol. 79, 12828–12839 (2005).
  • Brooks TJ, Phillpotts RJ. Interferon-α protects mice against lethal infection with St Louis encephalitis virus delivered by the aerosol and subcutaneous routes. Antiviral Res. 41, 57–64 (1999).
  • Kalil AC, Devetten MP, Singh S et al. Use of interferon-α in patients with West Nile encephalitis: report of 2 cases. Clin. Infect. Dis. 40, 764–766 (2005).
  • Sayao AL, Suchowersky O, Al-Khathaami A et al. Calgary experience with West Nile virus neurological syndrome during the late summer of 2003. Can. J. Neurol. Sci. 31, 194–203 (2004).
  • Rahal JJ, Anderson J, Rosenberg C, Reagan T, Thompson LL. Effect of interferon-α2b therapy on St. Louis viral meningoencephalitis: clinical and laboratory results of a pilot study. J. Infect. Dis. 190, 1084–1087 (2004).
  • Solomon T, Dung NM, Wills B et al. Interferon α-2a in Japanese encephalitis: a randomised double-blind placebo-controlled trial. Lancet 361, 821–826 (2003).
  • Zeitlin L, Cone RA, Whaley KJ. Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg. Infect. Dis. 5, 54–64 (1999).
  • Sawyer LA. Antibodies for the prevention and treatment of viral diseases. Antiviral Res. 47, 57–77 (2000).
  • Colombage G, Hall R, Pavy M, Lobigs M. DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250, 151–163 (1998).
  • Pincus S, Mason PW, Konishi E et al. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 187, 290–297 (1992).
  • Falconar AK. Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch. Virol. 144, 2313–2330 (1999).
  • Vazquez S, Guzman MG, Guillen G et al. Immune response to synthetic peptides of dengue prM protein. Vaccine 20, 1823–1830 (2002).
  • Despres P, Dietrich J, Girard M, Bouloy M. Recombinant baculoviruses expressing yellow fever virus E and NS1 proteins elicit protective immunity in mice. J. Gen. Virol. 72(Pt 11), 2811–2816 (1991).
  • Schlesinger JJ, Brandriss MW, Cropp CB, Monath TP. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J. Virol. 60, 1153–1155 (1986).
  • Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 68(Pt 3), 853–857 (1987).
  • Schlesinger JJ, Brandriss MW, Putnak JR, Walsh EE. Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J. Gen. Virol. 71(Pt 3), 593–599 (1990).
  • Schlesinger JJ, Chapman S. Neutralizing F(ab')2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fail to protect mice against lethal YF encephalitis. J. Gen. Virol. 76(Pt 1), 217–220 (1995).
  • Henchal EA, Henchal LS, Schlesinger JJ. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 69(Pt 8), 2101–2107 (1988).
  • Falgout B, Bray M, Schlesinger JJ, Lai CJ. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 64, 4356–4363 (1990).
  • Putnak JR, Schlesinger JJ. Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a and NS2b. J. Gen. Virol. 71(Pt 8), 1697–1702 (1990).
  • Roehrig JT, Mathews JH, Trent DW. Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 128, 118–126 (1983).
  • Brandriss MW, Schlesinger JJ, Walsh EE, Briselli M. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J. Gen. Virol. 67, 229–234 (1986).
  • Schlesinger JJ, Brandriss MW, Walsh EE. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J. Immunol. 135, 2805–2809 (1985).
  • Camenga DL, Nathanson N, Cole GA. Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors. J. Infect. Dis. 130, 634–641 (1974).
  • Kimura-Kuroda J, Yasui K. Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J. Immunol. 141, 3606–3610 (1988).
  • Chiba N, Osada M, Komoro K, Mizutani T, Kariwa H, Takashima I. Protection against tick-borne encephalitis virus isolated in Japan by active and passive immunization. Vaccine 17, 1532–1539 (1999).
  • Phillpotts RJ, Stephenson JR, Porterfield JS. Passive immunization of mice with monoclonal antibodies raised against tick-borne encephalitis virus. Brief report. Arch. Virol. 93, 295–301 (1987).
  • Broom AK, Wallace MJ, Mackenzie JS, Smith DW, Hall RA. Immunisation with gamma globulin to Murray Valley encephalitis virus and with an inactivated Japanese encephalitis virus vaccine as prophylaxis against Australian encephalitis: evaluation in a mouse model. J. Med. Virol. 61, 259–265 (2000).
  • Peiris JS, Porterfield JS. Antibody-mediated enhancement of flavivirus replication in macrophage-like cell lines. Nature 282, 509–511 (1979).
  • Peiris JSM, Gordon S, Unkeless JC, Porterfield JS. Monoclonal anti-Fc receptor IgG blocks antibody-dependent enhancement of viral replication in macrophages. Nature 289, 189–191 (1981).
  • Peiris JSM, Porterfield JS, Roehrig JT. Monoclonal antibodies against the flavivirus West Nile. J. Gen. Virol. 58, 283–289 (1982).
  • Cardosa MJ, Porterfield JS, Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages. J. Exp. Med. 158, 258–263 (1983).
  • Gollins S, Porterfield J. Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody and viral fate. J. Gen. Virol. 65, 1261–1272 (1984).
  • Gollins SW, Porterfield JS. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral entry. J. Gen. Virol. 66, 1969–1982 (1985).
  • Cardosa MJ, Gordon S, Hirsch S, Springer TA, Porterfield JS. Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J. Virol. 57, 952–959 (1986).
  • Halstead SB, Porterfield JS, O'Rourke EJ. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am. J. Trop. Med. Hyg. 29, 638–642 (1980).
  • Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev. Infect. Dis. 11(Suppl. 4), S830–S839 (1989).
  • Kurane I, Ennis FE. Immunity and immunopathology in dengue virus infections. Semin. Immunol. 4, 121–127 (1992).
  • Morens DM. Antibody-dependent of enhancement of infection and the pathogenesis of viral disease. Clin. Infect. Dis. 19, 500–512 (1994).
  • Barrett AD, Gould EA. Antibody-mediated early death in vivo after infection with yellow fever virus. J. Gen. Virol. 67, 2539–2542 (1986).
  • Gould EA, Buckley A, Groeger BK, Cane PA, Doenhoff M. Immune enhancement of yellow fever virus neurovirulence for mice: studies of mechanisms involved. J. Gen. Virol. 68, 3105–3112 (1987).
  • Gould EA, Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J. Gen. Virol. 70, 1605–1608 (1989).
  • Webb HE, Wight DG, Platt GS, Smith CEG. Langat virus encephalitis in mice. I. The effect of the administration of specific antiserum. Am. J. Hyg. 66, 343–354 (1968).
  • Kreil TR, Eibl MM. Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J. Virol. 71, 2921–2927 (1997).
  • Tesh RB, Arroyo J, Travassos Da Rosa AP, Guzman H, Xiao SY, Monath TP. Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg. Infect. Dis. 8, 1392–1397 (2002).
  • Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA, Fikrig E. Immunization of mice against West Nile virus with recombinant envelope protein. J. Immunol. 167, 5273–5277 (2001).
  • Engle M, Diamond MS. Antibody prophylaxis and therapy against West Nile Virus infection in wild type and immunodeficient mice. J. Virol. 77, 12941–12949 (2003).
  • Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating west nile virus infection in mice. J. Infect. Dis. 188, 5–12 (2003).
  • Julander JG, Winger QA, Olsen AL, Day CW, Sidwell RW, Morrey JD. Treatment of West Nile virus-infected mice with reactive immunoglobulin reduces fetal titers and increases dam survival. Antiviral Res. 65, 79–85 (2005).
  • Shimoni Z, Niven MJ, Pitlick S, Bulvik S. Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg. Infect. Dis. 7, 759 (2001).
  • Hamdan A, Green P, Mendelson E, Kramer MR, Pitlik S, Weinberger M. Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis. Transpl. Infect. Dis. 4, 160–162 (2002).
  • Gould LH, Sui J, Foellmer H et al. Protective and therapeutic capacity of human single chain Fv-Fc fusion proteins against West Nile virus. J. Virol. (2005).
  • Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).
  • Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).
  • Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206–220 (2005).
  • Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell. Biol. 6, 127–138 (2005).
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).
  • Garrus JE, von Schwedler UK, Pornillos OW et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).
  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).
  • Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).
  • Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).
  • McCown M, Diamond MS, Pekosz A. The utility of siRNA transcripts produced by RNA polymerase I in down regulating viral gene expression and replication of negative- and positive-strand RNA viruses. Virology 313, 514–524 (2003).
  • Geiss BJ, Pierson TC, Diamond MS. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virology 53, 51–13 (2005).
  • Bai F, Wang T, Pal U, Bao F, Gould LH, Fikrig E. Use of RNA interference to prevent lethal murine West Nile virus infection. J. Infect. Dis. 191, 1148–1154 (2005).
  • Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002).
  • Saleh MC, Van Rij RP, Andino R. RNA silencing in viral infections: insights from poliovirus. Virus Res. 102, 11–17 (2004).
  • Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl Acad. Sci. USA 100, 2718–2723 (2003).
  • Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).
  • Wilson JA, Jayasena S, Khvorova A et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl Acad. Sci. USA 100, 2783–2788 (2003).
  • Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 235–240 (2003).
  • McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 418, 38–39 (2002).
  • McCaffrey AP, Nakai H, Pandey K et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21, 639–644 (2003).
  • Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776 (2003).
  • Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc. Natl Acad. Sci. USA 102, 773–778 (2005).
  • Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl Acad. Sci. USA 101, 8682–8686 (2004).
  • Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA 101, 8676–8681 (2004).
  • Ge Q, Eisen HN, Chen J. Use of siRNAs to prevent and treat influenza virus infection. Virus Res. 102, 37–42 (2004).
  • Ma DD, Rede T, Naqvi NA, Cook PD. Synthetic oligonucleotides as therapeutics: the coming of age. Biotechnol. Annu. Rev. 5, 155–196 (2000).
  • Kinney RM, Huang CY, Rose BC et al. Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J. Virol. 79, 5116–5128 (2005).
  • Summerton J, Stein D, Huang SB, Matthews P, Weller D, Partridge M. Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug. Dev. 7, 63–70 (1997).
  • Neuman BW, Stein DA, Kroeker AD et al. Antisense morpholino-oligomers directed against the 5´ end of the genome inhibit coronavirus proliferation and growth. J. Virol. 78, 5891–5899 (2004).
  • Raviprakash K, Liu K, Matteucci M, Wagner R, Riffenburgh R, Carl M. Inhibition of dengue virus by novel, modified antisense oligonucleotides. J. Virol. 69, 69–74 (1995).
  • Deas TS, Binduga-Gajewska I, Tilgner M et al. Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J. Virol. 79, 4599–4609 (2005).
  • Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).
  • Sodroski JG. HIV-1 entry inhibitors in the side pocket. Cell 99, 243–246 (1999).
  • Rapaport D, Ovadia M, Shai Y. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. Embo. J. 14, 5524–5531 (1995).
  • Young JK, Li D, Abramowitz MC, Morrison TG. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J. Virol. 73, 5945–5956 (1999).
  • Okazaki K, Kida H. A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication. J. Gen. Virol. 85, 2131–2137 (2004).
  • Lescar J, Roussel A, Wien MW et al. The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).
  • Bressanelli S, Stiasny K, Allison SL et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Embo. J. 23, 728–738 (2004).
  • Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol. J. 2, 49 (2005).
  • Lorono-Pino MA, Blitvich BJ, Farfan-Ale JA et al. Serologic evidence of West Nile virus infection in horses, Yucatan State, Mexico. Emerg. Infect. Dis. 9, 857–859 (2003).
  • Blitvich BJ, Fernandez-Salas I, Contreras-Cordero JF et al. Serologic evidence of West Nile virus infection in horses, Coahuila State, Mexico. Emerg. Infect. Dis. 9, 853–856 (2003).
  • Dupuis AP II, Marra PP, Kramer LD. Serologic evidence of West Nile virus transmission, Jamaica, West Indies. Emerg. Infect. Dis. 9, 860–863 (2003).

Websites

  • CDC – WNV www.cdc.gov/ncidod/dvbid/westnile/ surv&control.htm (Accessed November 2005)
  • WNV posting http://nyhq.org/posting/rahal.html (Accessed November 2005)
  • Intravenous immunoglobulin – West Nile encephalitis: safety and efficacy www.clinicaltrials.gov/ct/show/NCT00068055?order=1 (Accessed November 2005)
  • An exploratory study of AVI-4020 in patients with possible acute neuroinvasive WNV disease www.clinicaltrials.gov/ct/show/NCT00091845 (Accessed November 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.