90
Views
33
CrossRef citations to date
0
Altmetric
Review

Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling

Pages 271-276 | Published online: 10 Jan 2014

References

  • Nealson KH, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev.43, 496–518 (1979).
  • Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol.104, 313–322 (1970).
  • Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri.Cell32, 773–781 (1983).
  • Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl Acad. Sci. USA97, 8789–8793 (2000).
  • Davies DG, Parsek MR, Pearson JP et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280, 295–298 (1998).
  • de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect. Immun.68, 4839–4849 (2000).
  • Parsek MR, Val DL, Hanzelka BL et al. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl Acad. Sci. USA96, 4360–4365 (1999).
  • Kalogeraki VS, Winans SC. The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. J. Bacteriol.177, 892–897 (1995).
  • Giammanco A, Maggio M, Giammanco G et al. Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea. J. Clin. Microbiol.34, 689–694 (1996).
  • Zhu J, Winans SC. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl Acad. Sci. USA96, 4832–4837 (1999).
  • Zhu J, Winans SC. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl Acad. Sci. USA98, 1507–1512 (2001).
  • Zhang RG, Pappas T, Brace JL et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature417, 971–974 (2002).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science284, 1318–1322 (1999).
  • Rahme LG, Stevens EJ, Wolfort SF et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science268, 1899–1902 (1995).
  • Tan MW, Rahme LG, Sternberg JA et al. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. USA96, 2408–2413 (1999).
  • Miyairi S, Tateda K, Fuse ET et al. Immunization with 3-oxododecanoyl-l-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J. Med. Microbiol.55, 1381–1387 (2006).
  • Pearson JP, Gray KM, Passador L et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA91, 197–201 (1994).
  • Pearson JP, Passador L, Iglewski BH et al. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa.Proc. Natl Acad. Sci. USA92, 1490–1494 (1995).
  • Hentzer M, Wu H, Andersen JB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J.22, 3803–3815 (2003).
  • Rasmussen TB, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiology152, 895–904 (2006).
  • Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest.112, 1460–1465 (2003).
  • Tateda K, Standiford TJ, Pechere JC et al. Regulatory effects of macrolides on bacterial virulence: potential role as quorum-sensing inhibitors. Curr. Pharm. Des.10, 3055–3065 (2004).
  • Rasmussen TB, Manefield M, Andersen JB et al. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology146(Pt 12), 3237–3244 (2000).
  • Mathesius U, Mulders S, Gao M et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl Acad. Sci. USA100, 1444–1449 (2003).
  • Dong YH, Wang LH, Xu JL et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature411, 813–817 (2001).
  • Muh U, Schuster M, Heim R et al. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother.50, 3674–3679 (2006).
  • Muh U, Hare BJ, Duerkop BA et al.. A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proc. Natl Acad. Sci. USA103, 16948–16952 (2006).
  • Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol.48, 1429–1449 (2003).
  • Wright JS 3rd, Lyon GJ, George EA et al.. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl Acad. Sci. USA101, 16168–16173 (2004).
  • Sperandio V, Torres AG, Jarvis B et al. Bacteria-host communication: the language of hormones. Proc. Natl Acad. Sci. USA100, 8951–8956 (2003).
  • Walters M, Sperandio V. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect. Immun.74, 5445–5455 (2006).
  • Furness JB. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst.81, 87–96 (2000).
  • Purves D, Fitzpatrick D, Williams SM et al. Neuroscience, 2nd Edition.Sinauer Associates, Inc. (2001).
  • Horger S, Schultheiss G, Diener M. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am. J. Physiol.275, G1367–G1376 (1998).
  • Fredollino PL, Kalani MY, Vaidihi N et al. Predicted 3D structure for the human β2 adrenergic receptor and its binding site for agonists and antagonists. Proc. Natl Acad. Sci. USA101, 2736–2741 (2004).
  • Frenzen PD, Drake A, Angulo FJ. Economic cost of illness due to Escherichia coli O157 infections in the United States. J. Food Prot.68, 2623–2630 (2005).
  • Kaper JB, O’Brien AD. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains, 1st Edition. ASM Press, DC, USA (1998).
  • Jarvis KG, Giron JA, Jerse AE et al. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc. Natl Acad. Sci. USA92, 7996–8000 (1995).
  • Jerse AE, Yu J, Tall BD et al. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA87, 7839–7843 (1990).
  • Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol.2, 123–140 (2004).
  • Karmali MA, Petric M, Lim C et al. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet2, 1299–1300 (1983).
  • Neely MN, Friedman DI. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol.28, 1255–1267 (1998).
  • Neely MN, Friedman DI. N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Mol. Microbiol.38, 1074–1085 (2000).
  • Wagner PL, Neely MN, Zhang X et al. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol.183, 2081–2085 (2001).
  • Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis.6, 458–465 (2000).
  • Kimmitt PT, Harwood CR, Barer MR. Induction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet353, 1588–1589 (1999).
  • Sperandio V, Torres AG, Giron JA et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol.183, 5187–5197 (2001).
  • Clarke MB, Hughes DT, Zhu C et al. The QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl Acad. Sci. USA103(27), 10420–10425 (2006).
  • Walters M, Sircili MP, Sperandio V. AI-3 synthesis is not dependent on luxS in Escherichia coli. J. Bacteriol.188, 5668–5681 (2006).
  • Walters M, Sperandio V. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect. Immun.74(10), 5445–5455 (2006).
  • Yoh M, Honda T. The stimulating effect of fosfomycin, an antibiotic in common use in Japan, on the production/release of verotoxin-1 from enterohaemorrhagic Escherichia coli O157:H7 in vitro.Epidemiol. Infect.119, 101–103 (1997).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.