92
Views
6
CrossRef citations to date
0
Altmetric
Review

Chemokines and their receptors in respiratory disease: a therapeutic target for respiratory syncytial virus infection

, &
Pages 415-425 | Published online: 10 Jan 2014

References

  • Ogra PL. Respiratory syncytial virus: the virus, the disease and the immune response. Paediatr. Respir. Rev.5(Suppl. A), S119–S126 (2004).
  • Staat MA. Respiratory syncytial virus infections in children. Semin. Respir. Infect.17, 15–20 (2002).
  • Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med.352, 1749–1759 (2005).
  • Glezen WP, Greenberg SB, Atmar RL, Piedra PA, Couch RB. Impact of respiratory virus infections on persons with chronic underlying conditions. JAMA283, 499–505 (2000).
  • Sigurs N, Gustafsson PM, Bjarnason R et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med.171, 137–141 (2005).
  • You D, Becnel D, Wang K, Ripple M, Daly M, Cormier SA. Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respir. Res.7, 107 (2006).
  • Aherne W, Bird T, Court SDM, Gardner PS, McQuillin J. Pathological changes in virus infections of the lower respiratory tract in children. J. Clin. Pathol.23, 7–18 (1970).
  • Everard ML, Swarbrick A, Wrightham M et al. Analysis of cells obtained by bronchial lavage of infants with respiratory syncytial virus infection. Arch. Dis. Child.71, 428–432 (1994).
  • Nelson KA, Yunis EJ. Demonstration of respiratory syncytial virus in an autopsy series. Pediatr. Pathol.10, 491–502 (1990).
  • Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin. Microbiol. Rev.18, 541–555 (2005).
  • Srikiatkhachorn A, Braciale TJ. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J. Exp. Med.186, 421–432 (1997).
  • Braciale TJ. Respiratory syncytial virus and T cells: interplay between the virus and the host adaptive immune system. Proc. Am. Thorac. Soc.2, 141–146 (2005).
  • Welliver TP, Garofalo RP, Hosakote Y et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J. Infect. Dis.195, 1126–1136 (2007).
  • Culley FJ, Pennycook AM, Tregoning JS et al. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology. J. Virol.80, 4521–4527 (2006).
  • Kristjansson S, Bjarnarson SP, Wennergren G et al. Respiratory syncytial virus and other respiratory viruses during the first 3 months of life promote a local TH2-like response. J. Allergy Clin. Immunol.116, 805–811 (2005).
  • Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat. Rev. Immunol.2, 106–115 (2002).
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol.18, 217–242 (2000).
  • Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol.17, 657–700 (1999).
  • Holgate ST, Bodey KS, Janezic A, Frew AJ, Kaplan AP, Teran LM. Release of RANTES, MIP-1 α, and MCP-1 into asthmatic airways following endobronchial allergen challenge. Am. J. Respir. Crit. Care Med.156, 1377–1383 (1997).
  • Ying S, Meng Q, Zeibecoglou K et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (intrinsic) asthmatics. J. Immunol.163, 6321–6329 (1999).
  • Pilette C, Francis JN, Till SJ, Durham SR. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur. Respir. J.23, 876–884 (2004).
  • Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J. Allergy Clin. Immunol.112, 930–934 (2003).
  • Hartl D, Griese M, Nicolai T et al. A role for MCP-1/CCR2 in interstitial lung disease in children. Respir. Res.6, 93 (2005).
  • Moore BB, Paine R 3rd, Christensen PJ et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol.167, 4368–4377 (2001).
  • Huaux F, Gharaee-Kermani M, Liu T et al. Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis. Am. J. Pathol.167, 1485–1496 (2005).
  • Petrek M, Kolek V, Szotkowska J, du Bois RM. CC and C chemokine expression in pulmonary sarcoidosis. Eur. Respir. J.20, 1206–1212 (2002).
  • Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev.14, 467–477 (2003).
  • Wickremasinghe MI, Thomas LH, O’Kane CM, Uddin J, Friedland JS. Transcriptional mechanisms regulating alveolar epithelial cell-specific CCL5 secretion in pulmonary tuberculosis. J. Biol. Chem.279, 27199–27210 (2004).
  • Chakravarty SD, Xu J, Lu B, Gerard C, Flynn J, Chan J. The chemokine receptor CXCR3 attenuates the control of chronic Mycobacterium tuberculosis infection in BALB/c mice. J. Immunol.178, 1723–1735 (2007).
  • Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol. Sci.27, 546–553 (2006).
  • Tomaki M, Sugiura H, Koarai A et al. Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulm. Pharmacol. Ther.11, 11 (2006).
  • Traves SL, Smith SJ, Barnes PJ et al. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J. Leukoc. Biol.76, 441–450 (2004).
  • Gutierrez-Ramos JC, Lloyd C, Kapsenberg ML, Gonzalo JA, Coyle AJ. Non-redundant functional groups of chemokines operate in a coordinate manner during the inflammatory response in the lung. Immunol. Rev.177, 31–42 (2000).
  • Drews J. Drug discovery: a historical perspective. Science287, 1960–1964 (2000).
  • Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev.16, 637–658 (2005).
  • Di Marzio P, Dai WW, Franchin G, Chan AY, Symons M, Sherry B. Role of Rho family GTPases in CCR1- and CCR5-induced actin reorganization in macrophages. Biochem. Biophys. Res. Commun.331, 909–916 (2005).
  • Wain JH, Kirby JA, Ali S. Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, -2, -3 and -4. Clin. Exp. Immunol.127, 436–444 (2002).
  • Shyamala V, Khoja H. Interleukin-8 receptors R1 and R2 activate mitogen-activated protein kinases and induce c-fos, independent of Ras and Raf-1 in Chinese hamster ovary cells. Biochemistry37, 15918–15924 (1998).
  • Barnes PJ, Stockley RA. COPD: current therapeutic interventions and future approaches. Eur. Respir. J.25, 1084–1106 (2005).
  • Lindemans CA, Coffer PJ, Schellens IM, de Graaff PM, Kimpen JL, Koenderman L. Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-κB-dependent mechanism. J. Immunol.176, 5529–5537 (2006).
  • Hirsch E, Katanaev VL, Garlanda C et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science287, 1049–1053 (2000).
  • Ward SG, Finan P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol.3, 426–434 (2003).
  • Le Y, Cui Y, Iribarren P, Ying G, Wang JM. Manipulating chemoattractant and receptor genes. In Vivo16, 1–23 (2002).
  • Westby M, van der Ryst E. CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir. Chem. Chemother.16, 339–354 (2005).
  • Castagna A, Biswas P, Beretta A, Lazzarin A. The appealing story of HIV entry inhibitors: from discovery of biological mechanisms to drug development. Drugs65, 879–904 (2005).
  • Dorr P, Westby M, Dobbs S et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother.49, 4721–4732 (2005).
  • Fatkenheuer G, Pozniak AL, Johnson MA et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med.11, 1170–1172 (2005).
  • Strizki JM, Tremblay C, Xu S et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob. Agents Chemother.49, 4911–4919 (2005).
  • Huff B. HIV co-receptor drugs on the horizon. GMHC Treat. Issues18, 7–8 (2004).
  • Schols D. HIV co-receptors as targets for antiviral therapy. Curr. Top. Med. Chem.4, 883–893 (2004).
  • Wegmann M, Goggel R, Sel S et al. Effect of a low molecular weight CCR-3 antagonist on chronic experimental asthma. Am. J. Respir. Cell Mol. Biol.17, 17 (2006).
  • Nakamura T, Ohbayashi M, Toda M, Hall DA, Horgan CM, Ono SJ. A specific CCR3 chemokine receptor antagonist inhibits both early and late phase allergic inflammation in the conjunctiva. Immunol. Res.33, 213–221 (2005).
  • De Lucca GV. Recent developments in CCR3 antagonists. Curr. Opin. Drug Discov. Devel.9, 516–524 (2006).
  • Morokata T, Suzuki K, Masunaga Y et al. A novel, selective, and orally available antagonist for CC chemokine receptor 3. J. Pharmacol. Exp. Ther.317, 244–250 (2006).
  • Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am. J. Pathol.160, 1353–1360 (2002).
  • Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest123, 1240–1247 (2003).
  • Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J. Leukoc. Biol.66, 401–410 (1999).
  • Mahler DA, Huang S, Tabrizi M, Bell GM. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest126, 926–934 (2004).
  • Becker S, Soukup JM. Airway epithelial cell-induced activation of monocytes and eosinophils in respiratory syncytial viral infection. Immunobiology201, 88–106 (1999).
  • Becker S, Reed W, Henderson FW, Noah TL. RSV infection of human airway epithelial cells causes production of the β-chemokine RANTES. Am. J. Physiol.272, L512–L520 (1997).
  • McNamara PS, Flanagan BF, Hart CA, Smyth RL. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis.191, 1225–1232 (2005).
  • Noah TL, Ivins SS, Murphy P, Kazachkova I, Moats-Staats B, Henderson FW. Chemokines and inflammation in the nasal passages of infants with respiratory syncytial virus bronchiolitis. Clin. Immunol.104, 86–95 (2002).
  • Zhang Y, Luxon BA, Casola A, Garofalo RP, Jamaluddin M, Brasier AR. Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays. J. Virol.75, 9044–9058 (2001).
  • Welliver RC, Garofalo RP, Ogra PL. β-chemokines, but neither T helper type 1 nor T helper type 2 cytokines, correlate with severity of illness during respiratory syncytial virus infection. Pediatr. Infect. Dis. J.21, 457–461 (2002).
  • Sheeran P, Jafri H, Carubelli C et al. Elevated cytokine concentrations in the nasopharyngeal and tracheal secretions of children with respiratory syncytial virus disease. Pediatr. Infect. Dis. J.18, 115–122 (1999).
  • Miller AL, Bowlin TL, Lukacs NW. Respiratory syncytial virus-induced chemokine production: linking viral replication to chemokine production in vitro and in vivo.J. Infect. Dis.189, 1419–1430 (2004).
  • Garofalo RP, Patti J, Hintz KA, Hill V, Ogra PL, Welliver RC. Macrophage inflammatory protein-1α (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J. Infect. Dis.184, 393–399 (2001).
  • Tekkanat KK, Maassab H, Miller A, Berlin AA, Kunkel SL, Lukacs NW. RANTES (CCL5) production during primary respiratory syncytial virus infection exacerbates airway disease. Eur. J. Immunol.32, 3276–3284 (2002).
  • Culley FJ, Pennycook AM, Tregoning JS et al. Role of CCL5 (RANTES) in viral lung disease. J. Virol.80, 8151–8157 (2006).
  • Trifilo MJ, Bergmann CC, Kuziel WA, Lane TE. CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. J. Virol.77, 4004–4014 (2003).
  • Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW. CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J. Immunol.170, 3348–3356 (2003).
  • Miller AL, Gerard C, Schaller M, Gruber AD, Humbles AA, Lukacs NW. Deletion of CCR1 attenuates pathophysiologic responses during respiratory syncytial virus infection. J. Immunol.176, 2562–2567 (2006).
  • Morrison PT, Thomas LH, Sharland M, Friedland JS. RSV-infected airway epithelial cells cause biphasic up-regulation of CCR1 expression on human monocytes. J. Leukoc. Biol. DOI: 10.1189/jlb.1006611 (2007).
  • Patel H, Platt R, Lozano JM et al. Glucocorticoids for acute viral bronchiolitis in infants and young children. Cochrane Database Syst. Rev.CD004878 (2004).
  • Rodriguez WJ, Arrobio J, Fink R et al. Prospective follow-up and pulmonary functions from a placebo-controlled randomized trial of ribavirin therapy in respiratory syncytial virus bronchiolitis. Ribavirin Study Group. Arch. Pediatr. Adolesc. Med.153, 469–474 (1999).
  • Kim HW, Canchola JG, Brandt CD et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol.89, 422–434 (1969).
  • Polack FP, Karron RA. The future of respiratory syncytial virus vaccine development. Pediatr. Infect. Dis. J.23, S65–S73 (2004).
  • Fuller H, Del Mar C. Immunoglobulin treatment for respiratory syncytial virus infection. Cochrane Database Syst. Rev.CD004883 (2006).
  • IMpact-RSV-Study-Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics102, 531–537 (1998).
  • Reeve CA, Whitehall JS, Buettner PG, Norton R, Reeve DM, Francis F. Cost–effectiveness of respiratory syncytial virus prophylaxis with palivizumab. J. Paediatr. Child Health42, 253–258 (2006).
  • Tahan F, Ozcan A, Koc N. Clarithromycin in the treatment of RSV bronchiolitis: a double-blind, randomised, placebo-controlled trial. Eur. Respir. J.29, 91–97 (2007).
  • Elliott MB, Tebbey PW, Pryharski KS, Scheuer CA, Laughlin TS, Hancock GE. Inhibition of respiratory syncytial virus infection with the CC chemokine RANTES (CCL5). J. Med. Virol.73, 300–308 (2004).
  • Hull J, Rowlands K, Lockhart E, Moore C, Sharland M, Kwiatkowski D. Variants of the chemokine receptor CCR5 are associated with severe bronchiolitis caused by respiratory syncytial virus. J. Infect. Dis.188, 904–907 (2003).
  • Vaidehi N, Schlyer S, Trabanino RJ et al. Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J. Biol. Chem.281, 27613–27620 (2006).
  • Gladue RP, Cole SH, Roach ML et al. The human specific CCR1 antagonist CP-481,715 inhibits cell infiltration and inflammatory responses in human CCR1 transgenic mice. J. Immunol.176, 3141–3148 (2006).
  • Matthews SP, Tregoning JS, Coyle AJ, Hussell T, Openshaw PJ. Role of CCL11 in eosinophilic lung disease during respiratory syncytial virus infection. J. Virol.79, 2050–2057 (2005).
  • Tripp RA, Jones LP, Haynes LM, Zheng H, Murphy PM, Anderson LJ. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol.2, 732–738 (2001).
  • Harcourt J, Alvarez R, Jones LP, Henderson C, Anderson LJ, Tripp RA. Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J. Immunol.176, 1600–1608 (2006).
  • Tripp RA, Jones L, Anderson LJ. Respiratory syncytial virus G and/or SH glycoproteins modify CC and CXC chemokine mRNA expression in the BALB/c mouse. J. Virol.74, 6227–6229 (2000).
  • Haynes LM, Jones LP, Barskey A, Anderson LJ, Tripp RA. Enhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3C–CX3CR1 interaction and expression of substance P. J. Virol.77, 9831–9844 (2003).
  • Amanatidou V, Sourvinos G, Apostolakis S, Tsilimigaki A, Spandidos DA. T280M variation of the CX3C receptor gene is associated with increased risk for severe respiratory syncytial virus bronchiolitis. Pediatr. Infect. Dis. J.25, 410–414 (2006).
  • Streit WJ, Davis CN, Harrison JK. Role of fractalkine (CX3CL1) in regulating neuron-microglia interactions: development of viral-based CX3CR1 antagonists. Curr. Alzheimer Res.2, 187–189 (2005).
  • Hall CB, Douglas RG Jr, Geiman JM. Respiratory syncytial virus infections in infants: quantitation and duration of shedding. J. Pediatr.89, 11–15 (1976).
  • Bonville CA, Lau VK, DeLeon JM et al. Functional antagonism of chemokine receptor CCR1 reduces mortality in acute pneumovirus infection in vivo.J. Virol.78, 7984–7989 (2004).
  • van Benten IJ, van Drunen CM, Koopman LP et al. Age- and infection-related maturation of the nasal immune response in 0–2-year-old children. Allergy60, 226–232 (2005).
  • Thomas LH, Sharland M, Friedland JS. Steroids fail to down-regulate respiratory syncytial virus-induced IL-8 secretion in infants. Pediatr. Res.52, 368–372 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.