70
Views
9
CrossRef citations to date
0
Altmetric
Review

Immunological options for the treatment of tuberculosis: evaluation of novel therapeutic approaches

, &
Pages 461-474 | Published online: 10 Jan 2014

References

  • Dye C. Global epidemiology of tuberculosis. Lancet367, 938–940 (2006).
  • Anonymous. Emergence of Mycobacterium tuberculosis with extensive resistence to second-line drugs worldwide, 2002–2004. MMWR Morbid. Mortal. Wkly Rep.5, 301–305 (2006).
  • Gandhi NR, Moll A, Sturm AW et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet368, 1575–1580 (2006).
  • Guerin C. In: BCG Vaccination Against Tuberculosis. Rosenthal SR (Ed.). Little, Brown & Co., MA, USA 48–53 (1957).
  • Colditz GA, Brewer TF, Berkey CS et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA271, 698–702 (1994).
  • Anonymous. The role of BCG vaccine in the prevention and control of tuberculosis in the United States. A joint statement by the advisory counsil for the elimination of tuberculosis and the advisory committee on immunization practices. MMWR Morbid. Mortal. Wkly Rep.45, 1–18 (1996).
  • Sterne JA, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int. J. Tuberc. Lung Dis.2, 200–207 (1998).
  • Andersen P, Doherty TM. The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol.3, 656–662 (2005).
  • Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol.4, 469–476 (2006).
  • Blumberg HM, Burman WJ, Chaisson RE et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med.167, 603–662 (2003).
  • Centers for Disease Control and Prevention. Initial therapy for tuberculosis in the era of multidrug resistance: recommendations of the Advisory Council for the Elimination of Tuberculosis. JAMA270, 694–698 (1993).
  • Takeda S, Maeda M, Hayakawa N, Sawabata N, Maekura R. Current surgical intervention for pulmonary tuberculosis. Ann. Thorac. Surg.79, 959–963 (2005).
  • Pomerantz BJ, Cleveland JC, Olsen HK, Pomerantz M. Pulmonary resection for multi-drug resistant tuberculosis. J. Thorac. Cardiovasc. Surg.121, 448–453 (2001).
  • Kim HJ, Kang CH, Kim YT et al. Prognostic factors for surgical resection in patients with multidrug-resistant tuberculosis. Eur. Respir.28, 576–580 (2006).
  • Hill AR, Manikal VM, Riska PF. Effectiveness of directly observed therapy (DOT) for tuberculosis: a review of multinational experience reported in 1990–2000. Medicine (Balt.)81, 179–193 (2002).
  • Casadevall A, Pirofski L. Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun.67, 3703–3713 (1999).
  • Dannenberg AM Jr. Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev. Infect. Dis.2, S369–S378 (1989).
  • Glatman-Freedman A. The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: advances towards a novel vaccine strategy. Tuberculosis86, 191–197 (2006).
  • Glatman-Freedman A. Advances in antibody-mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy. FEMS Immunol. Med. Microbiol.39, 9–16 (2003).
  • Wallis RS. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis.41, 201–208 (2005).
  • Holland SM. Cytokine therapy of mycobacterial infections. Adv. Intern. Med.45, 431–452 (2000).
  • Zumla A, Malon P, Henderson J, Grange JM. Impact of HIV infection on tuberculosis. Postgrad. Med. J.76, 259–268 (2000).
  • Murray HW. Current and future clinical applications of interferon-γ in host antimicrobial defense. Intensive Care Med.22(Suppl. 4), S456–S461 (1996).
  • Sibley LD, Franzblau SG, Krahenbuhl JL. Intracellular fate of Mycobacterium leprae in normal and inactivated mouse macrophages. Infect. Immun.55, 680–685 (1987).
  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med.178, 2243–2247 (1993).
  • Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259, 1739–1742 (1993).
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med.178, 2249–2254 (1993).
  • Kamijo R, Shapiro D, Havell EA et al. Mice that lack the interferon-γ receptor have profoundly altered responses to infection with bacillus Calmette–Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med.178, 1435–1440 (1993).
  • Doherty TM, Sher A. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection. J. Immunol.158, 4822–4831 (1997).
  • Edwards CK 3rd, Hedegaard HB, Zlotnik A, Gangadharam PR, Johnston RB Jr, Pabst MJ. Chronic infection due to Mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E2 and reversal by injection of indomethacin, muramyl dipeptide, or interferon-γ. J. Immunol.136, 1820–1827 (1986).
  • Holland SM, Eisenstein EM, Kuhns DB et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon γ. A preliminary report. N. Engl. J. Med.330, 1348–1355 (1994).
  • The International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon γ to prevent infection in chronic granulomatous disease. N. Engl. J. Med.324, 509–516 (1991).
  • Bemiller LS, Roberts DH, Starko KM, Curnutte JT. Safety and effectiveness of long-term interferon γ therapy in patients with chronic granulomatous disease. Blood Cells Mol. Dis.21, 239–247 (1995).
  • Gallin JI, Farber JM, Holland SM, Nutman TB. Interferon-γ in the management of infectious diseases. Ann. Intern. Med.123, 216–224 (1995).
  • Squires KE, Murphy WF, Madoff LC, Murray HW, Interferon-γ and Mycobacterium avium-intracellulare infection. J. Infect. Dis.159, 599–600 (1989).
  • Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-γ via aerosol. Lancet349, 1513–1515 (1997).
  • Suarez-Mendez R, Garcia-Garcia I, Fernandez-Olivera N et al. Adjuvant interferon γ in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect. Dis.4, 44 (2004).
  • Koh WJ, Kwon OJ, Suh GY et al. Six-month therapy with aerosolized interferon-γ for refractory multidrug-resistant pulmonary tuberculosis. J. Korean Med. Sci.19, 167–171 (2004).
  • Giacomini E, Iona E, Ferroni L et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J. Immunol.166, 7033–7041 (2001).
  • Manca C, Tsenova L, Bergtold A et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction IFN-α/β Proc. Natl Acad. Sci. USA98, 5752–5757 (2001).
  • Remoli ME, Giacomini E, Lutfalla G et al. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J. Immunol.169, 366–374 (2002).
  • Gautier G, Humbert M, Deauvieau F et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukine-12p70 secretion by dendritic cells. J. Exp. Med.201, 1435–1446 (2005).
  • Bouchonnet F, Boechat N, Bonay M, Hance AJ. α/β interferon impairs the ability of human macrophages to control growth of Mycobacterium bovis BCG. Infect. Immun.70, 3020–3025 (2002).
  • Cooper AM, Pearl JE, Brooks JV, Ehlers S, Orme IM. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect. Immun.68, 6879–6882 (2000).
  • Kuchtey J, Fulton SA, Reba SM, Harding CV, Boom WH. Interferon-αβ mediates partial control of early pulmonary Mycobacterium bovis bacillus Calmette–Guerin infection. Immunology118, 39–49 (2006).
  • Palmero D, Eiguchi K, Rendo P, Castro Zorrilla L, Abbate E, Gonzalez Montaner LJ. Phase II trial of recombinant interferon-α2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int. J. Tuberc. Lung Dis.3, 214–218 (1999).
  • Giosue S, Casarini M, Ameglio F et al. Aerosolized interferon-α treatment in patients with multi-drug-resistant pulmonary tuberculosis. Eur. Cytokine Netw.11, 99–104 (2000).
  • Blanchard DK. Cytokine activation of killer cells in mycobacterial immunity. Adv. Exp. Med. Biol.319, 105–112 (1992).
  • Blanchard DK, Michelini-Norris MB, Friedman H, Djeu JY. Lysis of mycobacteria-infected monocytes by IL-2-activated killer cells: role of LFA-1. Cell. Immunol.119, 402–411 (1989).
  • Kaplan G, Britton WJ, Hancock GE et al. The systemic influence of recombinant interleukin 2 on the manifestations of lepromatous leprosy. J. Exp. Med.173, 993–1006 (1991).
  • Jeevan A, Asherson GL. Recombinant interleukin-2 limits the replication of Mycobacterium lepraemurium and Mycobacterium bovis BCG in mice. Infect. Immun.56, 660–664 (1988).
  • Takahashi S, Setoguchi Y, Nukiwa T, Kira S. Soluble interleukin-2 receptor in sera of patients with pulmonary tuberculosis. Chest99, 310–314 (1991).
  • Lawn SD, Rudolph D, Ackah A, Coulibaly D, Wiktor S, Lal RB. Lack of induction of interleukin-2-receptor-α in patients with tuberculosis and human immunodeficiency virus co-infection: implications for pathogenesis. Trans. R. Soc. Trop. Med. Hyg.95, 449–452 (2001).
  • Akuffo H, Kaplan G, Kiessling R et al. Administration of recombinant interleukin-2 reduces the local parasite load of patients with disseminated cutaneous leishmaniasis. J. Infect. Dis.161, 775–780 (1990).
  • Converse P, Ottenhoff TH, Work Teklemariam S et al. Intradermal recombinant interleukin 2 enhances peripheral blood T-cell responses to mitogen and antigens in patients with lepromatous leprosy. Scand. J. Immunol.32, 83–91 (1990).
  • Hancock GE, Molloy A, Ab BK et al. In vivo administration of low-dose human interleukin-2 induces lymphokine-activated killer cells for enhanced cytolysis in vitro. Cell. Immunol.132, 277–284 (1991).
  • Johnson BJ, Ress SR, Willcox P et al. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol. Ther.1, 185–196 (1995).
  • Johnson BJ, Bekker LG, Rickman R et al. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber. Lung Dis.78, 195–203 (1997).
  • Johnson JL, Ssekasanvu E, Okwera A et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med.168, 185–191 (2003).
  • Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol.3, 133–146 (2003).
  • Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med.186, 39–45 (1997).
  • Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol.168, 1322–1327 (2002).
  • Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme LM. The role of interleukine-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology84, 423–432 (1995).
  • Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J. Immunol.155, 2515–2524 (1995).
  • Feng CG, Jankovic D, Kullberg M et al. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J. Immunol.174(7), 4185–4192 (2005).
  • Nolt D, Flynn JL. Interleukin-12 therapy reduces the number of immune cells and pathology in lungs of mice infected with Mycobacterium tuberculosis. Infect. Immun.72, 2976–2988 (2004).
  • Greinert U, Ernst M, Schlaak M, Entzian P. Interleukin-12 as successful adjuvant in tuberculosis treatment. Eur. Resp. J.17, 1049–1051 (2001).
  • Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleukin-2 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90, 2541–2548 (1997).
  • Ha SJ, Park SH, Kim HJ et al. Enhanced immunogenicity and protective efficacy with the use of interleukin-12 encapsulated microspheres plus AS01B in tuberculosis subunit vaccination. Infect. Immun.74, 4954–4959 (2006).
  • Triccas JA, Sun AL, Palendira U, Britton WJ. Comparative affects of plasmid-encoded interleukin-12 and interleukin-18 on the protective efficacy of DNA vaccination against Mycobacterium tuberculosis. Immunol. Cell. Biol.80, 346–350 (2002).
  • Yi Z, Fu Y, Yang C et al. Recombinant M. smegmatis vaccine targeted delivering IL-12/GLS into macrophages can induce specific cellular immunity against M. tuberculosis in BALB/c mice. Vaccine25, 638–648 (2007).
  • Girgis NI, Farid Z, Kilpatrick ME, Sultan Y, Mikhail IA. Dexamethasone adjunctive treatment for tuberculous meningitis. Pediatr. Infect. Dis. J.10, 179–183 (1991).
  • Wallis RS, Amir-Tahmasseb M, Ellner JJ. Induction of interleukin 1 and tumor necrosis factor by mycobacterial proteins: the monocyte western blot. Proc. Natl Acad. Sci. USA87, 3348–3352 (1990).
  • Barnes PF, Fong SJ, Brennan PJ, Twomey PE, Mazumder A, Modlin RL. Local production of tumor necrosis factor and IFN-γ in tuberculous pleuritis. J. Immunol.145, 149–154 (1990).
  • Bekker LG, Maartens G, Steyn L, Kaplan G. Selective increase in plasma tumor necrosis factor-α and concomitant clinical deterioration after initiating therapy in patients with severe tuberculosis. J. Infect. Dis.178, 580–584 (1998).
  • Ribeiro-Rodrigues R, Resende Co T, Johnson JL et al. Sputum cytokine levels in patients with pulmonary tuberculosis as early markers of mycobacterial clearance. Clin. Diagn. Lab. Immunol.9, 818–823 (2002).
  • Wallis RS, Phillips M, Johnson JL et al. Inhibition of isoniazid-induced expression of Mycobacterium tuberculosis antigen 85 in sputum: potential surrogate marker in tuberculosis chemotherapy trials. Antimicrob. Agents Chemother.45, 1302–1304 (2001).
  • Aung H, Toossi Z, Wisnieski JJ et al. Induction of monocyte expression of tumor necrosis factor α by the 30-kD α antigen of Mycobacterium tuberculosis and synergism with fibronectin. J. Clin. Invest.98, 1261–1268 (1996).
  • Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell56, 731–740 (1989).
  • Algood HM, Lin PL, Yankura D, Jones A, Chan J, Flynn JL. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J. Immunol.172, 6846–6857 (2004).
  • Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol.168, 4620–4627 (2002).
  • Hirsch CS, Ellner JJ, Russell DG, Rich EA. Complement receptor-mediated uptake and tumor necrosis factor-α-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J. Immunol.152, 743–753 (1994).
  • Flynn JL, Goldstein MM, Chan J et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity2, 561–572 (1995).
  • Gardam MA, Keystone EC, Menzies R et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect. Dis.3, 148–155 (2003).
  • Dinarello CA. Anti-cytokine therapeutics and infections. Vaccine21(Suppl. 2), S24–S34 (2003).
  • Rook GA, Attiyah R, Filley E. New insights into the immunopathlogy of tuberculosis. Pathobiology59, 148–152 (1991).
  • Filley EA, Rook GA. Rffect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun.59, 2567–2572 (1991).
  • Filley EA, Bull HA, Dowd PM, Rook GA. The effect of Mycobacterium tuberculosis on the susceptibility of human cells to the stimulatory and toxic effects of tumour necrosis factor. Immunology77, 505–509 (1992).
  • Collins KR, Quinones-mateu ME, Toosi Z, Arts EJ. Impact of tuberculosis on HIV-1 replication, diversity and disease progression. AIDS Rev.4, 165–176 (2002).
  • Oliveira Pinto LM, Garcia S, Lecoeur H, Rapp C, Gougeon M. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood99(5), 1666–1675 (2002).
  • Skomsvoll JF, Wallenius M, Koksvik HS et al. Drug insight: anti-tumor necrosis factor therapy for inflammatory arthropathies during reproduction, pregnancy and lactation. Nat. Clin. Pract. Rheumatol.3, 156–164 (2007).
  • Scott DL, Kingsley GH. Tumor necrosis factor inhibitors for rheumatoid arthritis. N. Engl. J. Med.355, 704–712 (2006).
  • Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med.345, 1098–1104 (2001).
  • Long R, Gardam M. Tumour necrosis factor-α inhibitors and the reactivation of latent tuberculosis infection. CMAJ168, 1153–1156 (2003).
  • Wallis RS, Kyambadde P, Johnson JL et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS18, 257–264 (2004).
  • Mayanja-Kizza H, Jones-Lopez E, Okwera A et al. Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: a Phase 2 clinical trial in Uganda. J. Infect. Dis.191, 856–865 (2005).
  • Bermudez LE, Kaplan G. Recombinant cytokines for controlling mycobacterial infections. Trends Microbiol.3, 22–27 (1995).
  • Okafor MC. Thalidomide for erythema nodosum leprosum and other applications. Pharmacotherapy23, 481–493 (2003).
  • Tramontana JM, Utaipat U, Molloy A et al. Thalidomide treatment reduces tumor necrosis factor α production and enhances weight gain in patients with pulmonary tuberculosis. Mol. Med.1, 384–397 (1995).
  • Schoeman JF, Springer P, Ravenscroft A et al. Adjunctive thalidomide therapy of childhood tuberculous meningitis: possible anti-inflammatory role. J. Child Neurol.15, 497–503 (2000).
  • Schoeman JF, Springer P, van Rensburg AJ et al. Adjunctive thalidomide therapy for childhood tuberculous meningitis: results of a randomized study. J. Child Neurol.19, 250–257 (2004).
  • Schoeman JF, Fieggen G, Seller N, Mendelson M, Hartzenberg B. Intractable intracranial tuberculous infection responsive to thalidomide: report of four cases. J. Child Neurol.21, 301–308 (2006).
  • Strang JI, Kakaza HH, Gibson DG et al. Controlled clinical trial of complete open surgical drainage and of prednisolone in treatment of tuberculous pericardial effusion in Transkei. Lancet2, 759–764 (1988).
  • Strang JI, Kakaza HH, Gibson DG, Girling DJ, Nunn AJ, Fox W. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet2, 1418–1422 (1987).
  • Lee CH, Wang WJ, Lan RS, Tsai YH, Chiang YC, Corticosteroids in the treatment of tuberculous pleurisy. A double-blind, placebo-controlled, randomized study. Chest94, 1256–1259 (1988).
  • Schon T, Elias D, Moges F et al. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur. Respir. J.21, 483–488 (2003).
  • Glatman-Freedman A, Casadevall A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev.11, 514–532 (1998).
  • Teitelbaum R, Glatman-Freedman A, Chen B et al. A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl Acad. Sci. USA95, 15688–15693 (1998).
  • Hamasur B, Haile M, Pawlowski A, Schroder U, Kallenius G, Svenson SB. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab')2 fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol.138, 30–38 (2004).
  • Chambers MA, Gavier-Widen D, Hewinson RG. Antibody bound to the surface antigen MPB83 of Mycobacterium bovis enhances survival against high dose and low dose challenge. FEMS Immunol. Med. Microbiol.93–100 (2004).
  • Glatman-Freedman A, Mednick AJ, Lendvai N, Casadevall A. Clearance and organ distribution of Mycobacterium tuberculosis lipoarabinomannan (LAM) in the presence and absence of LAM-binding IgM. Infect. Immun.68, 335–341 (2000).
  • Pethe K, Alonso S, Biet F et al. The heparine-binding haemaglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature412, 190–194 (2001).
  • Schwebach JR, Casadevall A, Schneerson R et al. Expression of a Mycobacterium tuberculosis arabinomannan antigen in vitro and in vivo. Infect. Immun.69, 5671–5678 (2001).
  • Falero-Diaz G, Challacombe S, Rahman D et al. Transmission of IgA and IgG monoclonal antibodies to mucosal fluids following intranasal or parenteral delivery. Int. Arch. Allergy Immunol.122, 143–150 (2000).
  • Williams A, Reljic R, Naylor I et al. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology111, 328–333 (2004).
  • Reljic R, Williams A, Ivanyi J. Mucosal immunotherapy of tuberculosis: is there a value in IgA ? Tuberculosis86(3-4), 179–190 (2006).
  • Reljic R, Clark SO, Williams A et al. Intranasal IFN extends passive IgA protection of mice against Mycobacterium tuberculosis lung infection. Clin. Exp. Immunol.143, 467–473 (2006).
  • Roy E, Stavropoulos E, Brennan J et al. Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect. Immun.73, 6101–6109 (2005).
  • Guirado E, Amat I, Gil O et al. Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect.8, 1252–1259 (2006).
  • Cardona PJ, Amat I, Gordillo S et al. Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine23, 1393–1398 (2005).
  • Casadevall A, Pirofski L. The damage–response framework of microbial pathogenesis. Nat. Rev. Microbiol.1, 17–24 (2003).
  • Pirofski LA, Casadevall A. Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun.67, 3703–3713 (1999).
  • Casadevall A, Pirofski L. The damage–response framework of microbial pathogenesis. Nat. Rev. Microbiol.1, 17–24 (2006).
  • Palmero D, Eiguchi K, Rendo P et al. Phase II trial of recombinant interferon-α2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int. J. Tuberc. Lung Dis.3, 214–218 (1999).
  • Glatman-Freedman A, Martin JM, Riska PF, Bloom BR, Casadevall A. Monoclonal antibodies to surface antigens of Mycobacterium tuberculosis and their use in a modified enzyme-linked immunosorbent spot assay for detection of mycobacteria. J. Clin. Microbiol.34, 2795–2802 (1996).

Website

  • InterMune enrolls first patient in Phase III trial in multidrug-resistant tuberculosis. 2000. www.corporate-ir.net/ireye/ir_site.zhtml? ticker=ITMN&script=410&layout=6& item_id=108600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.