27
Views
3
CrossRef citations to date
0
Altmetric
Review

Understanding the yeast proteome: a bioinformatics perspective

Pages 193-205 | Published online: 09 Jan 2014

References

  • Uetz P, Giot L, Cagney G etal. A comprehensive analysis of protein—protein interactions in Saccharomyces cerevisiae. Nature 403,623–627 (2000).
  • Ito T, Chiba T, Ozawa R et aL A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci.USA 98,4569–4574 (2001).
  • Schwikowski B, Uetz P, Fields S. A network of protein—protein interactions in yeast. Nature BiotechnoL 18,1257–1261 (2000).
  • Tong AH, Lesage G, Bader GD et al. Global mapping of the yeast genetic interaction network. Science 303,808–813 (2004).
  • Gavin AC, Bosche M, Krause R et aL Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415,141–147 (2002).
  • Ho Y, Gruhler A, Heilbut A et aL Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415,180–183 (2002).
  • Ghaemmaghami S, Huh WK, Bower K et al. Global analysis of protein expression in yeast. Nature 425,737–741 (2003).
  • Huh WK, Falvo JV, Gerke LC et al. Global analysis of protein localization in budding yeast. Nature 425,686–691 (2003).
  • Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285,901–906 (1999).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster Science 302,1727–1736 (2003).
  • Li S, Armstrong CM, Bertin N et al. A map of the interactome network of the metazoanC. elegans. Science 303,540–543 (2004).
  • Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature 406,378–382 (1999).
  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature 411,41–42 (2001).
  • Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 296,910–913 (2002).
  • Gomez SM, Lo SH, Rzhetsky A. Probabilistic prediction of unknown metabolic and signal-transduction networks. Genetics 159,1291–1298 (2001).
  • Alm E, Arkin AR Biological networks. CUIT: Opin. Struct. Biol. 13,193–202 (2003).
  • Mewes HW, Frishman D, Guldener U et al. MIPS: a database for genomes and protein sequences. Nudeic Acids Res. 30,31–34 (2002).
  • Xenarios I, Salwinski L, Duan XQJ et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30,303–305 (2002).
  • Mrowka R, Patzak A, Herzel H. Is there a bias in proteome research? Genome Res. 11, 1971–1973 (2001).
  • Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein—protein interaction data?J. MoL Biol. 327,919–923 (2003).
  • Edwards A, Kus B, Jansen R et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 18,529–536 (2002).
  • Grigoriev A. A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Adds Res. 29,3513–3519 (2001).
  • Ge H, Liu Z, Church GM, Vidal M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2001).
  • Jansen R., Greenbaum D, Gerstein M. Relating whole-genome expression data with protein—protein interactions. Genome Res. 12,37–46 (2002).
  • Kemmeren P, van Berkum NL, Vilo J et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. MoL Cell 9, 1133–1143 (2002).
  • Walhout AJ, Reboul J, Shtanko 0 et al. Integrating interactome, phenome and transcriptome mapping data for the C. e/egans germline. CUIT: Biol. 12, 1952-1958 (2002).
  • von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein—protein interactions. Nature 417,399–403 (2002).
  • Jones S, Thornton JM. Principles of protein—protein interactions. Proc. Natl Acad. Sci. USA 93,13–20 (1996).
  • Bock JR, Gough DA. Predicting protein—protein interactions from primary structure. Bioinformatics 17,455–460 (2001).
  • Dandekar T, Snel B, Huynen M, Bork E Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23,324–328 (1998).
  • Marcotte EM, Pellegrini M, Ng HL et aL Detecting protein function and protein—protein interactions from genome sequences. Science 285,751–753 (1999).
  • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction maps for complete genomes based on gene fusion events. Nature 402,86–90 (1999).
  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96,4285–4288 (1999).
  • Wu J, Kasif S, DeLisi C. Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19, 1524–1530 (2003).
  • Osterman A, Overbeek R. Missing genes in metabolic pathways: a comparative genomics approach. CUIT: Opin. Chem. Biol. 7,238–251 (2003).
  • Park J, Lappe M, Teichmann SA. Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. j MoL Biol. 307,929–938 (2001).
  • Mulder NJ, Apweiler R, Attwood TK et aL The interpro database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31,315–318 (2003).
  • Sprinzak E, Margalit H. Correlated sequence-signatures as markers of protein—protein interaction. J. MoL 311,681-692 poly
  • Bateman A, Birney E, Durbin R et aL The Pfam protein families database. Nucleic Acids Res. 28,263–266 (2000).
  • Deng M, Mehta S, Sun F, Chen T. Inferring domain—domain interactions from protein—protein interactions. Genome Res. 12,1540–1548 (2002). Prediction of protein—protein interactions using maximum likelihood estimates and conserved patterns of domain—domain interaction.
  • Newman JR, Wolf E, Kim PS. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97,13203–13208 (2000).
  • Tong API, Drees B, Nardelli G et aL A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 295, 321–324 (2002).
  • Jansen R, Lan N, Qian J, Gerstein M. Integration of genomic data sets to predict protein complexes in yeast. I Struct. Funct. Genomics 2,71–81 (2002).
  • Jansen R, Yu H, Greenbaum D et al. A Bayesian networks approach for predicting protein—protein interactions from genomic data. Science 302,449–453 (2003).
  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4,2 (2003).
  • Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123-12128 (2003).
  • Wojcik J, Schachter V. protein—protein interaction map inference using interacting domain profile pairs. Bioinformatics 17\(Suppl. 1), 5296—S305 (2001).
  • Wojcik J, Boneca IG, Legrain E Prediction, assessment and validation of protein interaction maps in bacteria. I MoL Biol. 323,763–770 (2002).
  • Bock JR, Gough DA. Whole-proteome interaction mining. Bioinformatics 19, 125–134 (2003).
  • Matthews LR, Vaglio P, Reboul J et aL Identification of potential interaction networks using sequence-based searches for conserved protein—protein interactions or 'interologs'. Genome Res. 11, 2120–2126 (2001).
  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).
  • Bader GD, Hogue CW. Analyzing yeast protein—protein interaction data obtained from different sources. Nature Biotechnol 20,991–997 (2002).
  • Legrain P, Wojcik J, Gauthier JM. protein—protein interaction maps: a lead towards cellular functions. Trends Genet. 17, 346–352 (2001).
  • Grigoriev A. On the number of protein—protein interactions in the yeast proteome. Nucleic Acids Res. 31, 4157–4161 (2003).
  • Dezso Z, Oltvai ZN, Barabasi AL. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res. 13, 2450–2454 (2003).
  • Deshaies RJ, Seol JH, McDonald WH et al. Charting the protein complexome in yeast by mass spectrometry. MoL Cell. Proteomics 1,3–10 (2002).
  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 402,47–52 (1999).
  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science 297,1551–1555 (2002).
  • Ihmels J, Friedlander G, Bergmann S et aL Revealing modular organization in the yeast transcriptional network. Nature Genet. 31, 370–377 (2002).
  • Strong M, Graeber TG, Beeby M etal. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Adds Res. 31,7099–7109 (2003).
  • Mrowka R. A Java applet for visualizing protein—protein interaction. Bioinformatics 17, 669–671 (2001).
  • Batagelj V, Mrvar A. Pajek - Program for large network analysis. Connections 21, 47–57 (1998).
  • Koike T, Rzhetsky A. A graphic editor for analyzing signal-transduction pathways. Gene 259,235–244 (2000).
  • Rain JC, Selig L, De Reuse H et aL The protein—protein interaction map of Helicobacter pylori Nature 409,211–215 (2001).
  • Bader GD, Betel D, Hogue CW. BIND, the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250 (2003).
  • Zanzoni A, Montecchi-Palazzi L, Quondam M et al. MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140 (2002).
  • Suzuki H, Saito R, Kanamori M et al. The mammalian protein—protein interaction database and its viewing system that is linked to the main FANTOM2 viewer. Genome Res. 13,1534–1541 (2003).
  • Han K, Ju BH. A fast layout algorithm for protein interaction networks. Bioinformatics 19,1882–1888 (2003).
  • Shannon P, Markiel A, Ozier O et aL Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
  • Steffen M, Petti A, Aach J, D'haeseleer P, Church G. Automated modelling of signal transduction networks. BMC Bioinformatics 3,34–44 (2002).
  • Yeger-Lotem E, Margalit H. Detection of regulatory circuits by integrating the cellular networks of protein—protein interactions and transcription regulation. Nucleic Acids Res. 31,6053–6061 (2003).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292,929–934 (2001).
  • Bennett MJ, Choe S, Eisenberg D. Domain swapping: entangling alliances between proteins. Proc. Natl Acad. Sci. USA 91,3127-3131 (1994).
  • D'Alessio G. Oligomer evolution in action? Nature Struct. Biol. 2,11–13 (1995).
  • Barker A, Fickert R, Oehler S, Muller-Hill B. Operator search by mutant Lac repressors. MoL Biol. 278,549–558 (1998).
  • Ciglic MI, Jackson PJ, Raillard SA et al. Origin of dimeric structure in the ribonuclease superfamily. Biochemistry 37, 4008–4022 (1998).
  • Karlsson C, Jornvall H, Hoag JO. Sorbitol dehydrogenase: cDNA coding for the rat enzyme. Variations within the alcohol dehydrogenase family independent of quaternary structure and metal content. Eur. Biochem. 198,761–765 (1991).
  • Marino-Ramirez L, Hu JC. Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using X repressor fusions. Yeast 19,641–650(2002).
  • Studier FW, Dunn JJ. Organization and expression of bacteriophage Ti DNA. Cold Spring Harb. Symp. Quant. Biol. 47, 999-1007 (1983).
  • Fassler J, Landsman D, Acharya A et al. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res. 12, 1190–1200 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.