687
Views
123
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry

Pages 87-101 | Published online: 09 Jan 2014

References

  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology3, 97–130 (1993).
  • Dwek RA. Glycobiology: towards understanding the function of sugars. Chem. Rev.96, 683–720 (1996).
  • Satomi Y, Shimonishi Y, Takao T. N-glycosylation at Asn in the Asn-Xaa-Cys motif of human transferrin. FEBS Letts.576, 51–56 (2004).
  • Hellerqvist CG. Linkage analysis using Lindberg method. Methods Enzymol.193, 554–573 (1990).
  • Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Parekh RB. Analysis of glycoprotein-associated oligosaccharides. Ann. Rev. Biochem.62, 65–100 (1993).
  • Rudd PM, Dwek RA. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr. Opin. Biotechnol.8, 488–497 (1997).
  • Rudd PM, Guile GR, Küster B, Harvey DJ, Opdenakker G, Dwek RA. Oligosaccharide sequencing technology. Nature388, 205–207 (1997).
  • Rudd PM, Colominas C, Royle L et al. A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulfate polyacrylamide electrophoresis gel bands. Proteomics1, 285–294 (2001).
  • Sutton CW, O’Neill JA, Cottrell JS. Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem.218, 34–46 (1994).
  • Harvey DJ, Rudd PM, Bateman RH et al. Examination of complex oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Org. Mass Spectrom.29, 753–765 (1994).
  • Royle L, Mattu TS, Hart E et al. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem.304, 70–90 (2002).
  • Annesley TM. Ion suppression in mass spectrometry. Clin. Chem.49, 1041–1044 (2003).
  • Carr SA, Huddleston MJ, Bean MF. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci.2, 183–196 (1993).
  • Juhasz P, Martin SA. The utility of nonspecific proteases in the characterization of glycoproteins by high-resolution time-of-flight mass spectrometry. Int. J. Mass Spectrom. Ion Processes169/170, 217–230 (1997).
  • Coddeville B, Girardet JM, Plancke Y, Campagna S, Linden G, Spik G. Structure of the O-glycopeptides isolated from bovine milk component PP3. Glycoconjugate J.15, 371–378 (1998).
  • An HJ, Peavy TR, Hedrick JL, Lebrilla CB. Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem.75, 5628–5637 (2003).
  • Mirgorodskaya E, Hassan H, Wandall HH, Clausen H, Roepstorff P. Partial vapor-phase hydrolysis of peptide bonds: a method for mass spectrometric determination of O-glycosylated sites in glycopeptides. Anal. Biochem.269, 54–65 (1999).
  • Davies MJ, Hounsell EF. HPLC and HPAEC of oligosaccharides and glycopeptides. Methods Mol. Biol.76, 79–100 (1998).
  • Takasaki S, Misuochi T, Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol.83, 263–268 (1982).
  • Patel T, Bruce J, Merry A et al. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry32, 679–693 (1993).
  • Merry AH, Neville DCA, Royle L et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem.304, 91–99 (2002).
  • Bendiac B, Cumming DA. Hydrazinolysis-N-reacetylation of glycopeptides and glycoproteins. Model studies using 2-acetamido-1-N-(l-aspart-4-oyl)-2-deoxy-α-d-glucopyranosylamine. Carbohydrate Res.144, 1–12 (1985).
  • Gerken TA, Gupta R, Jentoft N. A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry31, 639–648 (1992).
  • Gerken TA, Owens CL, Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:GalNAc transferase peptide binding site. J. Biol. Chem.272, 9709–9719 (1997).
  • Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem.73, 6063–6069 (2001).
  • Huang Y, Konse T, Mechref Y, Novotny MV. Matrix-assisted laser desorption/ionization mass spectrometry compatible β-elimination of O-linked oligosaccharides. Rapid Commun. Mass Spectrom.16, 1199–1204 (2002).
  • Hanisch FG, Jovanovic M, Peter-Katalinic J. Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments. Anal. Biochem.290, 47–59 (2001).
  • Tarentino AL, Gómez CM, Plummer TH Jr. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry24, 4665–5671 (1985).
  • Gonzalez J, Takao T, Hori H et al. A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant α-amylase by treatment with peptide-N-glycosidase F in 18O-labelled water. Anal. Biochem.205, 151–158 (1992).
  • Küster B, Harvey DJ. Ammonium-containing buffers should be avoided during enzymatic release of glycans from glycoproteins when followed by reducing terminal derivatization. Glycobiology7, vii–ix. (1997).
  • Tretter V, Altmann F, März L. Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α1-3 to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem.199, 647–652 (1991).
  • Küster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ ionization mass spectrometry and normal-phase high performance liquid chromatography. Anal. Biochem.250, 82–101 (1997).
  • Powell AK, Harvey DJ. Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun. Mass Spectrom.10, 1027–1032 (1996).
  • Wheeler SF, Harvey DJ. Extension of the in-gel release method for structural analysis of neutral and sialylated N-linked glycans to the analysis of sulfated glycans. Anal. Biochem.296, 92–100 (2001).
  • Charlwood J, Skehel JM, Camilleri P. Immobilization of antibodies in gels allows the improved release and identification of glycans. Proteomics1, 275–284 (2001).
  • Mills PB, Mills K, Johnson AW, Clayton PT, Winchester BG. Analysis by matrix assisted laser desorption/ionisation-time of flight mass spectrometry of the post-translational modifications of α1-antitrypsin isoforms separated by two-dimensional polyacrylamide gel electrophoresis. Proteomics1, 778–786 (2001).
  • Charlwood J, Skehel JM, Camilleri P. Analysis of N-linked oligosaccharides released from glycoproteins separated by two-dimensional gel electrophoresis. Anal. Biochem.284, 49–59 (2000).
  • Charlwood J, Bryant D, Skehel JM, Camilleri P. Analysis of N-linked oligosaccharides: progress towards the characterization of glycoprotein-linked carbohydrates. Biomol. Eng.18, 229–240 (2001).
  • Charlwood J, Birrell H, Gribble A, Burdes V, Tolson D, Camilleri P. A probe for the versatile analysis and characterization of N-linked oligosaccharides. Anal. Chem.72, 1453–1461 (2000).
  • Callewaert N, Geysens S, Molemans F, Contreras R. Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology11, 275–281 (2001).
  • Litynska A, Pochec E, Hoja-Lukowicz D et al. The structure of the oligosaccharides of α3β1 integrin from human ureter epithelium (HCV29) cell line. Acta Biochemica Polonica49, 491–500 (2002).
  • Callewaert N, Vervecken W, van Hecke A, Contreras R. Use of a meltable polyacrylamide matrix for sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a procedure for N-glycan analysis on picomole amounts of glycoproteins. Anal. Biochem.303, 93–95 (2002).
  • Kolarich D, Altmann F. N-glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal. Biochem.285, 64–75 (2000).
  • Altmann F, Paschinger K, Dalik T, Vorauer K. Characterization of peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase A and its N-glycans. Eur. J. Biochem.252, 118–123 (1998).
  • Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem.240, 210–226 (1996).
  • Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-aminobenzamide and anthranilic acid. Anal. Biochem.230, 229–238 (1995).
  • Hase S. Analysis of sugar chains by pyridylamination. Methods Mol. Biol.14, 69–80 (1993).
  • Kuraya N, Hase S. Analysis of pyridylaminated O-linked sugar chains by two-dimensional sugar mapping. Anal. Biochem.233, 205–211 (1996).
  • Otake Y, Fujimoto I, Tanaka F et al. Isolation and characterization of an N-linked oligosaccharide that is significantly increased in sera from patients with non-small cell lung cancer. J. Biochem. (Tokyo)129, 537–542 (2001).
  • Viseux N, Hironowski X, Delaney J, Domon B. Qualitative and quantitative analysis of the glycosylation pattern of recombinant proteins. Anal. Chem.73, 4755–4762 (2001).
  • Haslam SM, Morris HR, Dell A. Mass spectrometric strategies: providing structural clues for helminth glycoproteins. Trends Parasitol.17, 231–235 (2001).
  • Barber M, Bordoli RS, Sedgwick RD, Tyler AN. Fast atom bombardment of solids (FAB): a new ion source for mass spectrometry. J. Chem. Soc., Chem. Commun.325–327 (1981).
  • Dell A. FAB Mass spectrometry of carbohydrates. Adv. Carbohydrate Chem. Biochem.45, 19–72 (1987).
  • Dell A, Carman NH, Tiller PR, Thomas-Oates JE. Fast atom bombardment mass spectrometric strategies for characterizing carbohydrate-containing biopolymers. Biomed. Environ. Mass Spectrom.16, 19–24 (1987).
  • Dell A, Thomas-Oates JE. Fast atom bombardment-mass spectrometry (FAB-MS): sample preparation and analytical strategies, In: Analysis of Carbohydrates by GLC and MS. Biermann CJ, McGinnis GD (Eds), CRC Press: Boca Raton, FL, USA, 217–235 (1989).
  • Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science291, 2351–2356 (2001).
  • Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Processes78, 53–68 (1987).
  • Mock KK, Davy M, Cottrell JS. The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem. Biophys. Res. Commun.177, 644–651 (1991).
  • Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev.18, 349–451 (1999).
  • Harvey DJ, Küster B, Wheeler SF, Hunter AP, Bateman RH, Dwek RA. Matrix-assisted laser desorption/ionization mass spectrometry of N-linked carbohydrates and related compounds, In: Mass Spectrometry in Biology and Medicine. Burlingame AL, Carr SA, Baldwin MA (Eds), Humana Press, NJ, USA, 407–437 (2000).
  • Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates. Int. J. Mass Spectrom.226, 1–35 (2003).
  • Strupat K, Karas M, Hillenkamp F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes111, 89–102 (1991).
  • Harvey DJ. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun. Mass Spectrom.7, 614–619 (1993).
  • Karas M, Ehring H, Nordhoff E et al. Matrix-assisted laser desorption/ionization mass spectrometry with additives to 2,5-dihydroxybenzoic acid. Org. Mass Spectrom.28, 1476–1481 (1993).
  • Mohr MD, Börnsen KO, Widmer HM. Matrix-assisted laser desorption/ionization mass spectrometry: improved matrix for oligosaccharides. Rapid Commun. Mass Spectrom.9, 809–814 (1995).
  • Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal. Chem.67, 1034–1041 (1995).
  • Mechref Y, Novotny MV. Matrix-assisted laser desorption/ionization mass spectrometry of acidic glycoconjugates facilitated by the use of spermine as a co-matrix. J. Am. Soc. Mass Spectrom.9, 1292–1302 (1998).
  • Papac DI, Wong A, Jones AJS. Analysis of acidic oligosaccharides and glycopeptides by matrix assisted laser desorption/ ionization time-of-flight mass spectrometry. Anal. Chem.68, 3215–3223 (1996).
  • Stahl B, Steup M, Karas M, Hillenkamp F. Analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.63, 1463–1466 (1991).
  • Nonami H, Tanaka K, Fukuyama Y, Erra-Balsells R. β-carboline alkaloids as matrices for UV-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass, and of cyclic and acyclic oligosaccharides. Rapid Commun. Mass Spectrom.12, 285–296 (1998).
  • Harvey DJ, Hunter AP, Bateman RH, Brown J, Critchley G. The relationship between in-source and post-source fragment ions in the MALDI mass spectra of carbohydrates recorded with reflectron-TOF mass spectrometers. Int. J. Mass Spectrom. Ion Processes188, 131–146 (1999).
  • Naven TJP, Harvey DJ. Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun. Mass Spectrom.10, 1361–1366 (1996).
  • Packer NH, Lawson MA, Jardine DR, Redmond JW. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconjugate J.15, 737–747 (1998).
  • Rouse JC, Vath JE. On-the-probe sample cleanup strategies for glycoprotein-released carbohydrates prior to matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Anal. Biochem.238, 82–92 (1996).
  • Börnsen KO, Mohr MD, Widmer HM. Ion exchange and purification of carbohydrates on a Nafion® membrane as a new sample pretreatment for matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun. Mass Spectrom.9, 1031–1034 (1995).
  • Küster B, Naven TJP, Harvey DJ. Rapid approach for sequencing neutral oligosaccharides by exoglycosidase digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom.31, 1131–1140 (1996).
  • Colangelo J, Orlando R. On-target exoglycosidase digestions, MALDI-MS for determining the primary structures of carbohydrate chains. Anal. Chem.71, 1479–1482 (1999).
  • Mechref Y, Novotny MV. Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal. Chem.70, 455–463 (1998).
  • Schmitt S, Glebe D, Alving K et al. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus. J. Biol. Chem.274, 11945–11957 (1999).
  • Geyer H, Schmitt S, Wuhrer M, Geyer R. Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS. Anal. Chem.71, 476–482 (1999).
  • Harvey DJ. Collision-induced fragmentation of underivatised N-linked carbohydrates ionized by electrospray. J. Mass Spectrom.35, 1178–1190 (2000).
  • Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage and branching data: ES-MS and CID. Anal. Chem.67, 1772–1784 (1995).
  • Harvey DJ, Bateman RH, Green MR. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom.32, 167–187 (1997).
  • Harvey DJ, Bateman RH, Bordoli RS, Tyldesley R. Ionization and fragmentation of complex glycans with a Q-TOF mass spectrometer fitted with a MALDI ion source. Rapid Commun. Mass Spectrom.14, 2135–2142 (2000).
  • Harvey DJ. N-[2-diethylamino)ethyl-4-aminobenzamide derivatives for high sensitivity mass spectrometric detection and structure determination of N-linked carbohydrates. Rapid Commun. Mass Spectrom.14, 862–871 (2000).
  • Harvey DJ. Electrospray mass spectrometry and collision-induced fragmentation of 2-aminobenzamide-labelled neutral N-linked glycans. The Analyst125, 609–617 (2000).
  • Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatised at the reducing terminus. J. Am. Soc. Mass Spectrom.11, 900–915 (2000).
  • Wong AW, Cancilla MT, Voss LR, Lebrilla CB. Anion dopant for oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.71, 205–211 (1999).
  • Cole RB, Zhu J. Chloride ion attachment in negative ion electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.13, 607–611 (1999).
  • Wong AW, Wang H, Lebrilla CB. Selection of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal. Chem.72, 1419–1425 (2000).
  • Zhu J, Cole RB. Formation and decomposition of chloride adduct ions, [M + Cl]-, in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.11, 932–941 (2000).
  • Cai Y, Concha MC, Murray JS, Cole RB. Evaluation of the role of multiple hydrogen bonding in offering stability to negative ion adducts in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom.13, 1360–1369 (2002).
  • Cai Y, Jiang Y, Cole RB. Anionic adducts of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem.75, 1638–1644 (2003).
  • Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 1; use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. (2005) (In Press).
  • Bahr U, Pfenninger A, Karas M, Stahl B. High sensitivity analysis of neutral underivatized oligosaccharides by nanoelectrospray mass spectrometry. Anal. Chem.69, 4530–4535 (1997).
  • Wuhrer M, Koeleman CAM, Deelder AM, Hokke CH. Normal-phase nanoscale liquid chromatography-mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal. Chem.76, 833–838 (2004).
  • Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Nano-scale liquid chromatography-mass spectrometry of 2-aminobenzamide-labeled oligosaccharides at low femtomole sensitivity. Int. J. Mass Spectrom.232, 51–57 (2004).
  • Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers63, 32–40 (2002).
  • Friedl CH, Lochnit G, Zähringer U, Bahr U, Geyer R. Structural elucidation of zwitterionic carbohydrates derived from glycosphingolipids of the porcine parasitic nematode Ascaris suum. Biochem. J.369, 89–102 (2003).
  • Que AH, Mechref Y, Huang Y, Taraszka JA, Clemmer DE, Novotny MV. Coupling capillary electrochromatography with electrospray Fourier transform mass spectrometry for characterizing complex oligosaccharide pools. Anal. Chem.75, 1684–1690 (2003).
  • Zamfir A, Konig S, Althoff J, Peter-Katalinc J. Capillary electrophoresis and off-line capillary electrophoresis-electrospray ionization quadrupole time-of-flight tandem mass spectrometry of carbohydrates. J. Chromatogr. A895, 291–299 (2000).
  • Demelbauer UM, Plematl A, Kremser L, Allmaier G, Josic D, Rizzi A. Characterization of glyco isoforms in plasma derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis25, 2026–2032 (2004).
  • Zamfir A, Peter-Katalinic J. Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research. Electrophoresis25, 1949–1963 (2004).
  • Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J.5, 397–409 (1988).
  • Harvey DJ, Martin RL, Jackson KA, Sutton CW. Fragmentation of N-linked glycans with a MALDI-ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom.18, 2997–3007 (2004).
  • Spengler B, Kirsch D, Kaufmann R, Lemoine J. Structure analysis of branched oligosaccharides using post-source decay in matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom.30, 782–787 (1995).
  • Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG. MALDI Quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal. Chem.72, 2132–2141 (2000).
  • Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG. Matrix-assisted laser desorption/ ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics1, 118–131 (2001).
  • Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG. A quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom.14, 1047–1057 (2000).
  • Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev.23, 161–227 (2004).
  • Kovácik V, Hirsch J, Kovác P, Heerma W, Thomas-Oates J, Haverkamp J. Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: evidence for internal monosaccharide residue loss. J. Mass Spectrom.30, 949–958 (1995).
  • Brüll LP, Heerma W, Thomas-Oates J, Haverkamp J, Kovácik V, Kovác P. Loss of internal 1–6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J. Am. Soc. Mass Spectrom.8, 43–49 (1997).
  • Warrack BM, Hail ME, Triolo A, Animati F, Seraglia R, Traldi P. Observation of internal monosaccharide losses in the collisionally activated dissociation mass spectra of anthracycline aminodisaccharides. J. Am. Soc. Mass Spectrom.9, 710–715 (1998).
  • Mattu TS, Royle L, Langridge J et al. O-glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase- HPLC and online tandem mass spectrometry: implications for the domain organization of the enzyme. Biochemistry39, 15695–15704 (2000).
  • Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. ‘Internal residue loss’: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal. Chem.74, 734–740 (2002).
  • Franz AH, Lebrilla CB. Evidence for long-range glycosyl transfer reactions in the gas phase. J. Am. Soc. Mass Spectrom.13, 325–337 (2002).
  • Brüll LP, Kovácik V, Thomas-Oates JE, Heerma W, Haverkamp J. Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun. Mass Spectrom.12, 1520–1532 (1998).
  • Orlando R, Bush CA, Fenselau C. Structural analysis of oligosaccharides by tandem mass spectrometry: collisional activation of sodium adduct ions. Biomed. Environ. Mass Spectrom.19, 747–754 (1990).
  • Ngoka LC, Gal J-F, Lebrilla CB. Effects of cations and charge types on the metastable decay rates of oligosaccharides. Anal. Chem.66, 692–698 (1994).
  • Cancilla MT, Penn SG, Carroll JA, Lebrilla CB. Co-ordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/Fourier transform mass spectrometry. J. Am. Chem. Soc.118, 6736–6745 (1996).
  • Mechref Y, Novotny MV, Krishnan C. Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem.75, 4895–4903 (2003).
  • Stephens E, Maslen SL, Green LG, Williams DH. Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem.76, 2343–2354 (2004).
  • Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem.73, 651–657 (2001).
  • Pfenninger A, Karas M, Finke B, Stahl B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 1: methodology). J. Am. Soc. Mass Spectrom.13, 1331–1340 (2002).
  • Pfenninger A, Karas M, Finke B, Stahl B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 2: application to isomeric mixtures). J. Am. Soc. Mass Spectrom.13, 1341–1348 (2002).
  • Chai W, Piskarev V, Lawson AM. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom.13, 670–679 (2002).
  • Quéméner B, Désiré C, Lahaye M, Debrauwer L, Negroni L. Structural characterisation of both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. Eur. J. Mass. Spectrom.9, 45–60 (2003).
  • Sagi D, Peter-Katalinic J, Conradt HS, Nimtz M. Sequencing of tri- and tetraantennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS. J. Am. Soc. Mass Spectrom.13, 1138–1148 (2002).
  • Wheeler SF, Harvey DJ. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by matrix-assisted laser desorption/ionization-time-of-flight and electrospray-time-of-flight mass spectrometry. Anal. Chem.72, 5027–5039 (2000).
  • Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 2; fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. (2005) (In Press).
  • Harvey DJ. Fragmentation of negative ions from carbohydrates: Part 3, fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. (2005) (In Press).
  • Karlsson NG, Schulz BL, Packer NH. Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J. Am. Soc. Mass Spectrom.15, 659–672 (2004).
  • Mizuno Y, Sasagawa T, Dohmae N, Takio K. An automated interpretation of MALDI/TOF postsource decay spectra of oligosaccharides. 1. Automated peak assignment. Anal. Chem.71, 4764–4771 (1999).
  • Gaucher SP, Morrow J, Leary JA. STAT: a saccharide topology analysis tool used in combination with tandem mass spectrometry. Anal. Chem.72, 2331–2336 (2000).
  • Ethier M, Saba JA, Ens W, Standing KG, Perreault H. Automated structural assignment of derivatized complex N-linked oligosaccharides from tandem mass spectra. 16, 1743–1754 (2002).
  • Ethier M, Saba JA, Spearman M et al. Application of the StrOligo algorithm for the automated structure assignment of complex N-linked glycans from glycoproteins using tandem mass spectrometry. Rapid Commun. Mass Spectrom.17, 2713–2720 (2003).
  • Lohmann KK, von der Lieth C-W. GLYCO-FRAGMENT: a web tool to support the interpretation of mass spectra of complex carbohydrates. Proteomics3, 2028–2035 (2003).
  • Joshi HJ, Harrison MJ, Schulz BL, Cooper CA, Packer NH, Karlsson NG. Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data. Proteomics4, 1650–1664 (2004).
  • Zhang S, Chelius D. Characterization of protein glycosylation using chip-based Infusion nanoelectrospray linear ion trap. J. Biomol. Tech.15, 120–133 (2004).
  • Froesch M, Bindila LM, Baykut G, Allen M, Peter-Katalinic J, Zamfir AD. Coupling of fully automated chip electrospray to Fourier transform ion cyclotron resonance mass spectrometry for high-performance glycoscreening and sequencing. Rapid Commun. Mass Spectrom.18, 3084–3092 (2004).
  • Ruotolo BT, Gillig KJ, Stone EG, Russell DH. Peak capacity of ion mobility mass spectrometry: separation of peptides in helium buffer gas. J. Chromatogr. B782, 385–392 (2002).
  • Myung S, Lee YJ, Moon MH et al. Development of high-sensitivity ion trap ion mobility spectrometry time-of-flight techniques: a high-throughput nano-LC-IMS-TOF separation of peptides arising from a Drosophila protein extract. Anal. Chem.75, 5137–5145 (2003).

Websites

  • Complex Carbohydrate Structural Database http:128.192.9.29/carbbank/default.htm (Viewed January 2005)
  • GlycoSuite https://tmat.proteomesystems.com/ glycosuite (Viewed January 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.