50
Views
34
CrossRef citations to date
0
Altmetric
Review

Morphoproteomics: exposing protein circuitries in tumors to identify potential therapeutic targets in cancer patients

Pages 337-348 | Published online: 09 Jan 2014

References

  • Liotta LA, Kohn EC, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA 286(18), 2211–2214 (2001).
  • Ciocca DR, Elledge R. Molecular markers for predicting response to tamoxifen in breast cancer patients. Endocrine 13, 1–10 (2000).
  • Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nature Rev. Drug Discov. 2, 205–213 (2003).
  • Ross JS, Schenkein DP, Pietrusko R et al. Targeted therapies for cancer 2004. Am. J. Clin Pathol. 122, 598–609 (2004).
  • Fisher ER, Anderson S, Dean S et al. Solving the dilemma of the immunohistochemical and other methods used for scoring estrogen receptor and progesterone receptor in patients with invasive breast carcinoma. Cancer 103(1), 164–173 (2005).
  • Beselga J. Phase I and II clinical trials of trastuzumab. Ann. Oncol. 12(Suppl. 1), S49–S55 (2001).
  • Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22(7), 1201–1208 (2004).
  • Herbst RS. Dose-comparative monotherapy trials of ZD1839 in previously treated non-small cell lung cancer patients. Semin. Oncol. 30(1), 30–38 (2003).
  • Brown RE, Lun M, Prichard JW, Blasick TM, Zhang PL. Morphoproteomic and pharmacoproteomic correlates in hormone-receptor-negative breast carcinoma cell lines. Ann. Clin. Lab. Sci. 34(3), 251–262 (2004).
  • Lun M, Zhang PL, Siegelmann-Danieli N, Blasick TM, Brown RE. Intracellular inhibitory effects of Velcade correlate with morphoproteomic expression of phosphorylated-nuclear factor-κB and p53 in breast cancer cell lines. Ann. Clin. Lab. Sci. 35(1), 15–24 (2005).
  • Gupta Ak, McKenna WG, Weber CN et al. Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin. Cancer Res. 8(3), 885–892 (2002).
  • Zhang PL, Pelliteri PK, Law A et al. Overexpression of phosphorylated nuclear factor-κB (p-NF-κB) in tonsillar squamous cell carcinoma and high grade dysplasia is associated with poor prognosis. Mod. Pathol. (In Press).
  • Lessard L, Mes-Masson A-M, Lamarre L, Wall L, Lattouf J-B, Saad F. NF-κB nuclear localization and its prognostic significance in prostate cancer. BJU Int. 91, 417–420 (2003).
  • Munn SE, Olliver L, Broadbent V, Pritchard J. Use of indomethacin in Langerhans cell histiocytosis. Med. Pediatr. Oncol. 32(4), 247–249 (1999).
  • Farran RP, Zaretski E, Egeler RM. Treatment of Langerhans cell histiocytosis with pamidronate. J. Pediatr. Hematol. Oncol. 23(1), 54–56 (2001).
  • Brown RE. Interferon-α therapy, protein kinase C-α and Langerhans cell histiocytosis. Med. Pediatr. Oncol. 41, 63–64 (2003).
  • Brown RE. Letter to the editor: cyclooxygenase-2 in osteolytic lesions of Langerhans cell histiocytosis. Med. Pediatr. Oncol. 34, 311 (2000).
  • Brown RE. Letter to the editor: more on pamidronate in Langerhans’-cell histiocytosis. N. Engl. J. Med. 345, 1503 (2001).
  • Brown RE. Brief communication: morphoproteomic analysis of osteolytic Langerhans cell histiocytosis with therapeutic implications. Ann. Clin. Lab. Sci. 35(2), 131–136 (2005).
  • Montella L, Insabato L, Pulmieri G. Imatinib mesylate for cerebral Langerhans’-cell histiocytosis. N. Engl. J. Med. 351, 1034–1035 (2004).
  • Hudelist G, Kostler WJ, Attems J et al. Her-2/neu-triggered intracellular tyrosine kinase activation: in vivo relevance of ligand-independent activation mechanisms and impact upon the efficacy of trastuzumab-based treatment. Br. J. Cancer 89(6), 983–991 (2003).
  • Thor A, Liu S, Edgerton S, Moore D, Stern D, DiGiovanna M. Activation (tyrosine phosphorylation) of ErbB-2 (HER2/neu) as a prognostic factor in node positive breast cancer: a study of incidence and correlation with outcome in breast cancer. J. Clin. Oncol. 18, 3230–3239 (2000).
  • Stern DF. Phosphoproteomics. Exp. Molec. Pathol. 70, 327–331 (2001).
  • Brown RE, Bostrom B, Zhang PL. Brief communication: morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann. Clin. Lab. Sci. 34(2), 203–205 (2004).
  • Xu G, Zhang W, Bertram P, Zheng XF, McLeod H. Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int. J. Oncol. 24, 893–900 (2004).
  • Altomare DA, Wang HG, Skele KL et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 23(34), 5853–5857 (2004).
  • Choe G, Horvath S, Cloughesy TF et al. Analysis of the phosphatidylinositol 3´-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 63, 2742–2746 (2003).
  • Slamon DJ, Leyland-Jones B, Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER-2 for metastatic breast cancer that overexpresses HER-2. N. Engl. J. Med. 344, 783–792 (2001).
  • O’Brien SG, Guilhot F, Larson RA et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).
  • Verweij J, van Oosterom A, Blay JY et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC Soft Tissue and Bone Sarcoma group Phase II study. Eur. J. Cancer 39, 2006–2011 (2003).
  • McCarty MF. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr. Cancer Ther.3(4), 349–380 (2004).
  • Brown RE. HER-2/neu-positive breast carcinoma: molecular concomitants by proteomic analysis and their therapeutic implications. Ann. Clin. Lab. Sci. 32(1), 12–21 (2002).
  • Girnita L, Wang M, Xie Y et al. Inhibition of N-linked glyosylation downregulates insulin-like growth factor-1 receptor at the cell surface and kills Ewing’s sarcoma cells: therapeutic implications. Anticancer Drug Des. 15(1), 67–72 (2000).
  • Mantha AJ, McFee KE, Niknejad N, Goss G, Lorimer IA, Dimitroulakos J. Epidermal growth factor receptor-targeted therapy potentiates lovastatin-induced apoptosis in head and neck squamous cell carcinoma cells. J. Cancer Res. Clin. Oncol. 129(11), 631–641 (2003).
  • Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch. Biochem. Biophys. 373(1), 231–241 (2000).
  • Jabbour E, Kantarjian H,Cortes J. Clinical activity of farnesyl transferase inhibitors in hematologic malignancies: possible mechanisms of action. Leukemia Lymphoma 45(11), 2187–2195 (2004).
  • Kelly DJ, Cox AJ, Gow RM, Zhang Y, Kemp BE, Gilbert RE. Platelet-derived growth factor receptor transactivation mediates the trophic effects of angiotensin II in vivo. Hypertension 44(2), 195–202 (2004).
  • Shah BH, Yesilkaya A, Olivares-Reyes JA, Chen HD, Hunyady L, Catt KJ. Differential pathways of angiotensin II-induced extracellularly regulated kinase 1/2 phosphorylation in specific cell types: role of heparin-binding epidermal growth factor. Mol. Endocrinol. 18(8), 2035–2048 (2004).
  • Garber K. Rapamycin’s resurrection: a new way to target the cancer cell cycle. JNCI Cancer Spectrum 93(20), 1517–1519 (2001).
  • Huang S, Houghton PJ, Mechanisms of resistance to rapamycins. Drug Resist. Updat. 4(6), 378–391 (2001).
  • Carraway H, Hidalgo M. New targets for therapy in breast cancer: Mammalian target of rapamycin (mTOR) antagonists. Breast Cancer Res. 6(5), 219–224 (2004).
  • Goudar RK, Shi Q, Hjelmeland MD et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE 788) and the mammalian target of rapamycin (RAD 001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther. 4(1), 101–112 (2005).
  • Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nature Rev. 2, 727–739 (2002).
  • Cohen EE, Rosen F, Stadler WM et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 21(10), 1980–1987 (2003).
  • Saito Y, Haendeler J, Hojo Y, Yamamoto K, Berk BC. Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol. Cell. Biol. 21(19), 6387–6394 (2001).
  • Graves LM, Han J, Earp HS III. Transactivation of the EGF receptor: is the PDGF receptor an unexpected accomplice? Mol. Interv. 2(4), 208–212 (2002).
  • Chiu T, Santiskulvong C, Rozengurt E. EGF receptor transactivation mediates ANG II-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288(2), G182–G194 (2005).
  • Gilmore AP, Valentijn AJ, Wang P et al. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J. Biol. Chem. 277(31), 27643–27650 (2002).
  • deJong JS, van Diest PJ, van der Valk P et al. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer, II: correlations with proliferation and angiogenesis. J. Pathol. 184, 53–57 (1998).
  • Kawakami Y, Kitaura J, Yao L et al. A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proc. Natl Acad. Sci. USA 100(16), 9470–9475 (2003).
  • Shao J, Evers BM, Sheng H. Roles of phosphatidylinositol 3´-kinase and mammalian target to rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res. 64(1), 229–235 (2004).
  • Mabuchi S, Ohmichi M, Kimura A et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 277(36), 33490–33500 (2002).
  • Tsutsumi N, Yonemitsu Y, Shikada Y et al. Essential role of PDGFR-α-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role of PDGFR α during angiogenesis. Circulation Res. 94, 1186–1194 (2004).
  • Gao N, Flynn DC, Zhang Z et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/Akt/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287, C281–C291 (2004).
  • Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y. Endothelin-mediated vascular growth requires p42/p44 mitogen-activated protein kinase and p70S6 kinase cascades via transactivation of epidermal growth factor receptor. Endocrinology 140(10), 4659–4668 (1999).
  • Morley SJ. Signaling through either the p38 or ERK mitogen-activated protein (MAP) kinase pathway is obligatory for phorbol ester and T-cell receptor complex (TCR-CD3)-stimulated phosphorylation of initiation factor (eIF) 4E in Jurkat T-cells. FEBS Lett. 418(3), 327–332 (1997).
  • Herbert TP, Tee AR, Proud CG. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J. Biol. Chem. 277(13), 11591–11596 (2002).
  • Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG. Inhibition of phosphatidylinositol 3-kinase and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells. J. Biol. Chem. 279(2), 1010–1019 (2004).
  • Vertegaal AC, Kuiperij HB, Yamaoka S, Courtois G, van der Eb AJ, Zantema A. Protein kinase C-α is an upstream activator of the IκB kinase complex in the TPA signal transduction pathway to NF-κB in U2OS cells. Cell. Signal. 12, 759–768 (2000).
  • Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401, 86–90 (1999).
  • Romano MF, Avellino R, Petrella A, Bisogni R, Romano S, Venuta S. Rapamycin inhibits doxorubin-induced NF-κB/Rel nuclear activity and enhances the apoptosis of melanoma cells. Eur. J. Cancer 40(18), 2829–2836 (2004).
  • Zhou L, Tan A, Iasvovskaia S, Li J, Lin A, Hershenson MB. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1 and nuclear factor-kB-mediated gene expression in airway epithelial cells. Am. J. Resp. Cell. Mol. Biol. 28, 762–769 (2003).
  • Lin F, Zhang PL, Yang XJ, Prichard JW, Lun My, Brown RE. Overexpressed and activated mTOR pathway in renal cell carcinomas. Mod. Pathol. 18(Suppl. 1), 152A–153A (2005) (Abstract 705).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22(5), 909–918 (2004).
  • Lee JT, McCubrey JA. BAY-43-9006 Bayer/Onyx. Curr. Opin. Investig. Drugs. 4(6), 757–763 (2003).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350(21), 2129–2139 (2004).
  • Weeraratna AT, Jiang Y, Hostetter G et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1(3), 279–288 (2002).
  • Jonsson M, Smith K, Harris AL. Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br. J. Cancer 78(4), 430–438 (1998).
  • Cortes J, Thomas D, Koller C et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin. Cancer Res. 10(10), 3371–3376 (2004).
  • Peralba JM, DeGraffenried L, Friedrichs W et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res. 9(8), 2882–2886 (2003).
  • Korf U, Wiemann S. Protein microarrays as a discovery tool for studying protein–protein interactions. Expert Rev. Proteomics 2(1), 13–26 (2005).
  • Richardson PG, Barlogie B, Berenson J et al. A Phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348(26), 2609–2617 (2003).
  • Shah MH, Young D, Kindler HL et al. Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin. Cancer Res. 10(18 Pt 1), 6111–6118 (2004).
  • Blaney SM, Bernstein M, Neville K et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a children’s oncology group study (ADVL0015). J. Clin. Oncol. 22(23), 4752–4757 (2004).
  • Zhang PL, Lun M, Siegelmann-Danieli N, Blasick TM, Brown RE. Pamidronate resistance and associated low Ras levels in breast cancer cells: a role for combinatorial therapy. Ann. Clin. Lab. Sci. 34(3), 263–270 (2004).
  • Grunwald V, De Graffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. 62(21), 6141–6145 (2002).
  • Kamat AM, Karashima T, Davis DW et al. The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol. Cancer Ther. 3(3), 279–290 (2004).
  • Merimsky O. Targeting metastatic leiomyosarcoma by rapamycin plus gemcitabine: an intriguing clinical observation. Int. J. Mol. Med. 14(5), 931–935 (2004).
  • Mathew P, Thall PF, Jones D et al. Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular Phase I trial in androgen-independent prostate cancer. J. Clin. Oncol. 22(16), 3323–3329 (2004).
  • van Waes C, Lebowitz P, Conley B, Gius D, Adams J, Sausville E. NF-κB and proteasome inhibition in therapy of head and neck cancer. 5th International Conference on Head and Neck Cancer, August 11–15th, Washington, DC, USA, (2004) (Abstract s202).
  • Palmieri G, Lastoria S, Montella L et al. Role of somatostatin analogue-based therapy in unresponsive malignant thymomas. Ann. Med. 31(Suppl. 2), 80–85 (1999).
  • Cattaneo MG, Scita G, Vicentini LM. Somatostatin inhibits PDGF-stimulated Ras activation in human neuroblastoma cells. FEBS Lett. 459(1), 64–68 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.