113
Views
11
CrossRef citations to date
0
Altmetric
Review

Use of proteomics to define targets of T-cell immunity

&
Pages 367-380 | Published online: 09 Jan 2014

References

  • Matzinger P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).
  • Kuckelkorn U, Ruppert T, Strehl B et al. Link between organ-specific antigen processing by 20S proteasomes and CD8+ T-cell-mediated autoimmunity. J. Exp. Med. 195, 983–990 (2002).
  • Rivett AJ, Bose S, Brooks P, Broadfoot KI. Regulation of proteasome complexes by γ-interferon and phosphorylation. Biochimie 83, 363–366 (2001).
  • Groettrup M, Khan S, Schwarz K, Schmidtke G. Interferon-γ inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83, 367–372 (2001).
  • Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T-cells at the levels of T-cell repertoire and presentation of viral antigens. J. Exp. Med. 193, 1319–1326 (2001).
  • Niedermann G, Geier E, Lucchiari-Hartz M, Hitziger N, Ramsperger A, Eichmann K. The specificity of proteasomes: impact on MHC class I processing and presentation of antigens. Immunol. Rev. 172, 29–48 (1999).
  • Preckel T, Fung-Leung WP, Cai Z et al. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286, 2162–2165 (1999).
  • Luckey CJ, King GM, Marto JA et al. Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. J. Immunol. 161, 112–121 (1998).
  • Nandi D, Jiang H, Monaco JJ. Identification of MECL-1 (LMP-10) as the third IFN-γ-inducible proteasome subunit. J. Immunol. 156, 2361–2364 (1996).
  • Momburg FV, Ortiz-Navarrete J, Neefjes E et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360, 174–177 (1992).
  • Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr. Opin. Immunol. 16, 76–81 (2004).
  • Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nature Immunol. 5, 670–677 (2004).
  • Kloetzel PM. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature Immunol. 5, 661–669 (2004).
  • Cresswell P, Bangia N, Dick T, Diedrich G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172, 21–28 (1999).
  • Purcell AW. The peptide-loading complex and ligand selection during the assembly of HLA class I molecules. Mol. Immunol. 37, 483–492 (2000).
  • Williams A, Peh CA, Elliott T. The cell biology of MHC class I antigen presentation. Tissue Antigens 59, 3–17 (2002).
  • Momburg F, Tan P. Tapasin – the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233 (2002).
  • McCluskey J, Rossjohn J, Purcell AW. TAP genes and immunity. Curr. Opin. Immunol. 16, 651–659 (2004).
  • Barnden MJ, Purcell AW, Gorman JJ, McCluskey J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165, 322–330 (2000).
  • Purcell AW, Gorman JJ, Garcia-Peydro M et al. Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J. Immunol. 166, 1016–1027 (2001).
  • Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).
  • Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J. Pept. Sci. 9, 255–281 (2003).
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).
  • Arunachalam B, Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J. Biol. Chem. 270, 2784–2790 (1995).
  • German RN, Castellino F, Han R et al. Processing and presentation of endocytically acquired protein antigens by MHC class II and class I molecules. Immunol. Rev. 151, 5–30 (1996).
  • Villadangos JA. Presentation of antigens by MHC class II molecules: getting the most out of them. Mol. Immunol. 38, 329–346 (2001).
  • Weenink SM, Gautam AM. Antigen presentation by MHC class II molecules. Immunol. Cell. Biol. 75, 69–81 (1997).
  • Jensen PE, Weber DA, Thayer WP, Chen X, Dao CT. HLA-DM and the MHC class II antigen presentation pathway. Immunol Res. 20, 195–205 (1999).
  • Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II αβ dimers and facilitates peptide loading. Cell 82, 155–165 (1995).
  • Rammensee HG. Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7, 85–96 (1995).
  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 39, 230–242 (1994).
  • Brown JH, Jardetzky TS, Gorga JC et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).
  • Reinherz EL, Tan K, Tang L et al. The crystal structure of a T-cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).
  • Scott CA, Peterson PA, Teyton L, Wilson IA. Crystal structures of two I-Ad–peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 8, 319–329 (1998).
  • Fremont DH, Hendrickson WA, Marrack P, Kappler J. Structures of an MHC class II molecule with covalently bound single peptides. Science 272, 1001–1004 (1996).
  • Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Ann. Rev. Immunol. 15, 821 (1997).
  • Sette A, Sidney J, del Guercio MF et al. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol. Immunol. 31, 813–822 (1994).
  • Sette A, Vitiello A, Reherman B et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T-cell epitopes. J. Immunol. 153, 5586–5592 (1994).
  • Crotzer VL, Christian RE, Brooks JM et al. Immunodominance among EBV-derived epitopes restricted by HLA-B27 does not correlate with epitope abundance in EBV-transformed B-lymphoblastoid cell lines. J. Immunol. 164, 6120–6129 (2000).
  • Zijlstra A, Testa JE, Quigley JP. Targeting the proteome/epitome, implementation of subtractive immunization. Biochem. Biophys. Res. Commun. 303, 733–744 (2003).
  • Ballot E, Bruneel A, Labas V, Johanet C. Identification of rat targets of antisoluble liver antigen autoantibodies by serologic proteome analysis. Clin. Chem. 49, 634–643 (2003).
  • Bumann D, Holland P, Siejak F et al. A comparison of murine and human immunoproteomes of Helicobacter pylori validates the preclinical murine infection model for antigen screening. Infect. Immun. 70, 6494–6498 (2002).
  • Klade CS. Proteomics approaches towards antigen discovery and vaccine development. Curr. Opin. Mol. Ther. 4, 216–223 (2002).
  • Haas G, Karaali G, Ebermayer K et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2, 313–324 (2002).
  • Maecker B, von Bergwelt-Baildon, Anderson KS et al. Linking genomics to immunotherapy by reverse immunology – ‘immunomics’ in the new millennium. Curr. Mol. Med. 1, 609–619 (2001).
  • Shalhoub P, Kern S, Girard S, Beretta L. Proteomic-based approach for the identification of tumor markers associated with hepatocellular carcinoma. Dis. Markers 17, 217–223 (2001).
  • Thery C, Boussac M, Veron P et al. Amigorena. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).
  • Ristori G, Salvetti M, Pesole G et al. Compositional bias and mimicry toward the nonself proteome in immunodominant T-cell epitopes of self and nonself antigens. FASEB J. 14, 431–438 (2000).
  • Romer TG, Boyle MD. Application of immunoproteomics to analysis of post-translational processing of the antiphagocytic M protein of Streptococcus. Proteomics 3, 29–35 (2003).
  • Jungblut PR. Proteome analysis of bacterial pathogens. Microbes Infect. 3, 831–840 (2001).
  • Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138, 1657–1659 (1987).
  • Boisgerault F, Tieng V, Stolzenberg MC et al. Differences in endogenous peptides presented by HLA-B*2705 and B*2703 allelic variants. Implications for susceptibility to spondylarthropathies. J. Clin. Invest. 98, 2764–2770 (1996).
  • Fruci D, Butler RH, Greco G et al. Differences in peptide-binding specificity of two ankylosing spondylitis-associated HLA-B27 subtypes. Immunogenetics 42, 123–128 (1995).
  • Paradela A, Garcia-Peydro M, Vazquez J, Rognan D, Lopez de Castro JA. The same natural ligand is involved in allorecognition of multiple HLA-B27 subtypes by a single T-cell clone: role of peptide and the MHC molecule in alloreactivity. J. Immunol. 161, 5481–5490 (1998).
  • Skipper JC, Kittlesen DJ, Hendrickson RC et al. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100. J. Immunol. 157, 5027–5033 (1996).
  • Ringrose JH, Yard BA, Muijsers A, Boog CJ, Feltkamp TE. Comparison of peptides eluted from the groove of HLA-B27 from Salmonella infected and non-infected cells. Clin. Rheumatol. 15(Suppl. 1), 74 (1996).
  • van Els CA, Herberts CA, van der Heeft E et al. A single naturally processed measles virus peptide fully dominates the HLA-A*0201-associated peptide display and is mutated at its anchor position in persistent viral strains. Eur. J. Immunol. 30, 1172–1181 (2000).
  • Urban RG, Chicz RM, Lane WS et al. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc. Natl Acad. Sci. USA 91, 1534–1538 (1994).
  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).
  • Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).
  • Macdonald WA, Purcell AW, Mifsud NA et al. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire and T-cell recognition. J. Exp. Med. 198, 679–691 (2003).
  • Andersen MH, Bonfill JE, Neisig A et al. Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J. Immunol. 163, 3812–3818 (1999).
  • Chen Y, Sidney J, Southwood S et al. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J. Immunol. 152, 2874–2881 (1994).
  • Chen W, Ede NJ, Jackson DC, McCluskey J, Purcell AW. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design. J. Immunol. 157, 1000–1005 (1996).
  • Haurum JS, Arsequell G, Lellouch AC et al. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T-lymphocytes. J. Exp. Med. 180, 739–744 (1994).
  • Kohler J, Martin S, Pflugfelder U, Ruh H, Vollmer J, Weltzien HU. Cross-reactive trinitrophenylated peptides as antigens for class II major histocompatibility complex-restricted T-cells and inducers of contact sensitivity in mice – limited T-cell receptor repertoire. Eur. J. Immunol. 25, 92–101 (1995).
  • Martin S, Ruh H, Hebbelmann S, Pflugfelder U, Rude B, Weltzien HU. Carrier-reactive hapten-specific cytotoxic T-lymphocyte clones originate from a highly preselected T-cell repertoire: implications for chemical-induced self-reactivity. Eur. J. Immunol. 25, 2788–2796 (1995).
  • Moulon C, Vollmer J, Weltzien HU. Characterization of processing requirements and metal cross-reactivities in T-cell clones from patients with allergic contact dermatitis to nickel. Eur. J. Immunol. 25, 3308–3315 (1995).
  • Purcell AW, Chen W, Ede NJ et al. Avoidance of self-reactivity results in skewed CTL responses to rare components of synthetic immunogens. J. Immunol. 160, 1085–1090 (1998).
  • Skipper JC, Hendrickson RC, Gulden PH et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J. Exp. Med. 183, 527–534 (1996).
  • Eisenlohr LC, Yewdell JW, Bennink JR. Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T-lymphocytes. J. Exp. Med. 175, 481–487 (1992).
  • Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T-lymphocyte responses. Ann. Rev. Immunol. 17, 51–88 (1999).
  • van der Burg SH, Klein MR, van de Velde CJ, Kast WM, Miedema F, Melief CJ. Induction of a primary human cytotoxic T-lymphocyte response against a novel conserved epitope in a functional sequence of HIV-1 reverse transcriptase. AIDS 9, 121–127 (1995).
  • Feller DC, de la Cruz VF. Identifying antigenic T-cell sites. Nature 349, 720–721 (1991).
  • Andersen MH, Tan L, Sondergaard I, Zeuthen J, Elliott T, Haurum JS. Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens 55, 519–531 (2000).
  • Schirle M, Weinschenk T, Stevanovic S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T-cell epitopes from defined antigens. J. Immunol. Methods 257, 1–16 (2001).
  • Verginis P, Stanford MM, Carayanniotis G. Delineation of five thyroglobulin T-cell epitopes with pathogenic potential in experimental autoimmune thyroiditis. J. Immunol. 169, 5332–5337 (2002).
  • Lu J, Celis E. Use of two predictive algorithms of the worldwide web for the identification of tumor-reactive T-cell epitopes. Cancer Res. 60, 5223–5227 (2000).
  • Schafer JR, Jesdale BM, George JA, Kouttab NM, De Groot AS. Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine 16, 1880–1884 (1998).
  • Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14, 121–130 (1998).
  • Roberts CG, Meister GE, Jesdale BM et al. Prediction of HIV peptide epitopes by a novel algorithm. AIDS Res. Hum. Retroviruses 12, 593–610 (1996).
  • Meister GE, Roberts CG, Berzofsky JA, De Groot AS. Two novel T-cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 13, 581–591 (1995).
  • Chang L, Kjer-Nielsen L, Flynn S et al. A method for identification of candidate cytotoxic T-cell epitopes: evaluation of HLA-class I ligands from human preproinsulin. Tissue Antigens 62, 408–147 (2003).
  • Falk K, Rotzschke O, Deres K, Metzger J, Jung G, Rammensee HG. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T-cell epitope forecast. J. Exp. Med. 174, 425–434 (1991).
  • Sijts AJ, Neisig A, Neefjes J, Pamer EG. Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J. Immunol. 156, 683–692 (1996).
  • Rotzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T-cells. Nature 348, 252–254 (1990).
  • Storkus WJ, Zeh HJ III, Salter RD, Lotze MT. Identification of T-cell epitopes: rapid isolation of class I-presented peptides from viable cells by mild acid elution. J. Immunother. 14, 94–103 (1993).
  • Storkus WJ, Zeh HJ, Maeurer MJ, Salter RD, Lotze MT. Identification of human melanoma peptides recognized by class I restricted tumor infiltrating T-lymphocytes. J. Immunol. 151, 3719–3727 (1993).
  • Rammensee HG, Falk K, Rotzschke O. Peptides naturally presented by MHC class I molecules. Ann. Rev. Immunol. 11, 213–244 (1993).
  • Prilliman KR, Jackson KW, Lindsey M, Wang J, Crawford D, Hildebrand WH. HLA-B15 peptide ligands are preferentially anchored at their C termini. J. Immunol. 162, 7277–7284 (1999).
  • Prilliman KR, Lindsey M, Jackson KW, Cole J, Bonner R, Hildebrand WH. Complexity among constituents of the HLA-B*1501 peptide motif. Immunogenetics 48, 89–97 (1998).
  • Hickman HD, Luis AD, Bardet W et al. Cutting edge: class I presentation of host peptides following HIV infection. J. Immunol. 171, 22–26 (2003).
  • Hickman HD, Batson CL, Prilliman KR, Crawford DL, Jackson KL, Hildebrand WH. C-terminal epitope tagging facilitates comparative ligand mapping from MHC class I positive cells. Hum. Immunol. 61, 1339–1346 (2000).
  • Hickman HD, Luis AD, Buchli R et al. Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J. Immunol. 172, 2944–2952 (2004).
  • Purcell AW, Gorman JJ. The use of post-source decay in matrix-assisted laser desorption/ionisation mass spectrometry to delineate T-cell determinants. J. Immunol. Methods 249, 17–31 (2001).
  • Yague J, Marina A, Vazquez J, Lopez De Castro JA. Major histocompatibility complex class I molecules bind natural peptide ligands lacking the amino-terminal binding residue in vivo. J. Biol. Chem. 276, 43699–43707 (2001).
  • Admon A, Barnea E, Ziv T. Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol. Cell. Proteomics 2, 388–398 (2003).
  • Luckey CJ, Marto JA, Partridge M et al. Differences in the expression of human class I MHC alleles and their associated peptides in the presence of proteasome inhibitors. J. Immunol. 167, 1212–1221 (2001).
  • Purcell AW, Gorman JJ. Immunoproteomics: mass spectrometry-based methods to study the targets of the immune response. Mol. Cell. Proteomics 3, 193–208 (2004).
  • Gregers TF, Fleckenstein B, Vartdal F, Roepstorff P, Bakke O, Sandlie I. MHC class II loading of high or low affinity peptides directed by Ii/peptide fusion constructs: implications for T-cell activation. Int. Immunol 15, 1291–1229 (2003).
  • Herberts CA, Stittelaar KJ, van der Heeft E et al. A measles virus glycoprotein-derived human CTL epitope is abundantly presented via the proteasomal-dependent MHC class I processing pathway. J. Gen. Virol. 82, 2131–2142 (2001).
  • Herberts CA, van Gaans-van den Brink J, van der Heeft E et al. Autoreactivity against induced or upregulated abundant self-peptides in HLA-A*0201 following measles virus infection. Hum. Immunol. 64, 44–55 (2003).
  • Spengler B, Kirsch D, Kaufmann R, Jaeger E. Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun. Mass Spectrom. 6, 105–108 (1993).
  • Yates JR III. Mass spectrometry. From genomics to proteomics. Trends Genet. 16, 5–8 (2000).
  • van der Heeft E, ten Hove GJ, Herberts CA, Meiring HD, van Els CA, de Jong AP. A microcapillary column switching HPLC-electrospray ionization MS system for the direct identification of peptides presented by major histocompatibility complex class I molecules. Anal. Chem. 70, 3742–3751 (1998).
  • Cox AL, Skipper J, Chen Y et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T-cell lines. Science 264, 716–719 (1994).
  • Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266 (1992).
  • Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).
  • Hunt DF, Michel H, Dickinson TA et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256, 1817–1820 (1992).
  • Sette A, Ceman S, Kubo RT et al. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 258, 1801–1804 (1992).
  • Henderson RA, Cox AL, Sakaguchi K et al. Direct identification of an endogenous peptide recognized by multiple HLA-A2. 1-specific cytotoxic T-cells. Proc. Natl Acad. Sci. USA 90, 10275–10279 (1993).
  • Huczko EL, Bodnar WM, Benjamin D et al. Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J. Immunol. 151, 2572–2587 (1993).
  • Sette A, DeMars R, Grey HM et al. Isolation and characterization of naturally processed peptides bound by class II molecules and peptides presented by normal and mutant antigen-presenting cells. Chem. Immunol. 57, 152–165 (1993).
  • Slingluff CL Jr, Cox AL, Henderson RA, Hunt DF, Engelhard VH. Recognition of human melanoma cells by HLA-A2.1-restricted cytotoxic T-lymphocytes is mediated by at least six shared peptide epitopes. J. Immunol. 150, 2955–2963 (1993).
  • Slingluff CL Jr, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. Curr. Opin. Immunol. 6, 733–740 (1994).
  • Slingluff CL Jr, Cox AL, Stover JM Jr, Moore MM, Hunt DF, Engelhard VH. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res. 54, 2731–2737 (1994).
  • Appella E, Padlan EA, Hunt DF. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. EXS 73, 105–119 (1995).
  • den Haan JM, Sherman NE, Blokland E et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995).
  • den Haan JM, Bontrop RE, Pool J et al. Conservation of minor histocompatibility antigens between human and non-human primates. Eur. J. Immunol. 26, 2680–2685 (1996).
  • Fiorillo MT, Meadows L, D’Amato M et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur J. Immunol. 27, 368–373 (1997).
  • Hu Q, Bazemore Walker CR, Girao C et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T-lymphocytes. Immunity 7, 221–231 (1997).
  • Meadows L, Wang W, den Haan JM et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T-cell recognition. Immunity 6, 273–281 (1997).
  • Kittlesen DJ, Thompson LW, Gulden PH et al. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J. Immunol. 160, 2099–2106 (1998).
  • Skipper JC, Gulden PH, Hendrickson RC et al. Mass-spectrometric evaluation of HLA-A*0201-associated peptides identifies dominant naturally processed forms of CTL epitopes from MART-1 and gp100. Int. J. Cancer 82, 669–677 (1999).
  • Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J. Exp. Med. 192, 1755–1762 (2000).
  • Guimezanes A, Barrett-Wilt GA, Gulden-Thompson P et al. Identification of endogenous peptides recognized by in vivo or in vitro generated alloreactive cytotoxic T-lymphocytes: distinct characteristics correlated with CD8 dependence. Eur. J. Immunol. 31, 421–432 (2001).
  • Nepom GT, Lippolis JD, White FM et al. Identification and modulation of a naturally processed T-cell epitope from the diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65). Proc. Natl Acad. Sci. USA 98, 1763–1769 (2001).
  • Pierce RA, Field ED, Mutis T et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J. Immunol. 167, 3223–3230 (2001).
  • Lippolis JD, White FM, Marto JA et al. Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J. Immunol. 169, 5089–5097 (2002).
  • Seamons A, Sutton J, Bai D et al. Competition between two MHC binding registers in a single peptide processed from myelin basic protein influences tolerance and susceptibility to autoimmunity. J. Exp. Med. 197, 1391–1397 (2003).
  • Macdonald W, Williams DS, Clements CS et al. Identification of a dominant self-ligand bound to three HLA B44 alleles and the preliminary crystallographic analysis of recombinant forms of each complex. FEBS Lett. 527, 27–32 (2002).
  • Hughes EA, Cresswell P. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr. Biol. 8, 709–712 (1998).
  • Lindquist JA, Jensen ON, Mann M, Hammerling GJ. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J. 17, 2186–2195 (1998).
  • Dick TP, Cresswell P. Thiol oxidation and reduction in major histocompatibility complex class I-restricted antigen processing and presentation. Methods Enzymol. 348, 49–54 (2002).
  • Dick TP, Bangia N, Peaper DR, Cresswell P. Disulfide bond isomerization and the assembly of MHC class I–peptide complexes. Immunity 16, 87–98 (2002).
  • Farmery MR, Allen S, Allen AJ, Bulleid NJ. The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J. Biol. Chem. 275, 14933–14938 (2000).
  • Grandea AG III, Lehner PJ, Cresswell P, Spies T. Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 46, 477–483 (1997).
  • Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114 (1996).
  • Brocke P, Garbi N, Momburg F, Hammerling GJ. HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr. Opin. Immunol. 14, 22–29 (2002).
  • Fremont DH, Monnaie D, Nelson CA, Hendrickson WA, Unanue ER. Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. Immunity 8, 305–317 (1998).
  • Gorman JJ, Ferguson BL, Speelman D, Mills J. Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci. 6, 1308–1315 (1997).
  • Lopaticki S, Morrow CJ, Gorman JJ. Characterization of pathotype-specific epitopes of newcastle disease virus fusion glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and post-source decay sequencing. J. Mass Spectrom. 33, 950–960 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.