33
Views
7
CrossRef citations to date
0
Altmetric
Review

Challenges facing the development and use of protein chips to analyze the phosphoproteome

&
Pages 487-497 | Published online: 09 Jan 2014

References

  • Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nature Methods 2(1), 17–25 (2005).
  • Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom. Rev. 10 (2004).
  • Hunter T. Signaling – 2000 and beyond. Cell 100(1), 113–27 (2000).
  • Fung E (Ed.) Protein Arrays: Methods and Protocols. 278, Humana Press, CA, USA (2003).
  • Wilson DS, Nock S. Recent developments in protein microarray technology. Angew Chem. Int. Ed. Engl. 42(5), 494–500 (2003).
  • Witte KL, Nock S. Recent applications of protein arrays in target identification and disease monitoring. Drug Discov. Today 1(1), 35–40 (2004).
  • Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2(4), 383–393 (2002).
  • Senger DR, Perruzzi CA. Secreted phosphoprotein markers for neoplastic transformation of human epithelial and fibroblastic cells. Cancer Res. 45(11), 5818–5823 (1985).
  • Bodovitz S, Joos T, Bachmann J. Protein biochips: the calm before the storm. Drug Discov. Today 10(4), 283–287 (2005).
  • Phelan ML, Nock S. Generation of bioreagents for protein chips. Proteomics 3(11), 2123–2134 (2003).
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517), 495–497 (1975).
  • Spieker-Polet H, Sethupathi P, Yam P, Knight KL. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit–rabbit hybridomas. Proc. Natl Acad. Sci. USA 92(20), 9348–9352 (1995).
  • Gembitsky DS, Lawlor K, Jacovina A, Yaneva M, Tempst P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol. Cell. Proteomics 3(11), 1102–1118 (2004).
  • Blaydes JP, Bojtesek B, Bloomberg GB, Hupp TR. The development and use of phospho-specific antibodies to study protein phosphorylation. Methods Mol. Biol. 99, 177–189 (2000).
  • Czernik AJ, Girault JA, Nairn AC et al. Production of phosphorylation state-specific antibodies. Methods Enzymol. 201, 264–283 (1991).
  • Harlow E, Land D. Antibodies: a Laboratory Manual. Cold Spring Habor, NY, USA (1988).
  • Borrebaeck CA, Ekstrom S, Hager AC et al. Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotechniques 30(5), 1126–1132 (2001).
  • Steinhauer C, Wingren C, Hager AC, Borrebaeck CA. Single framework recombinant antibody fragments designed for protein chip applications. Biotechniques 12(Suppl.), 38–45 (2002).
  • Peluso P, Wilson DS, Do D et al. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312(2), 113–124 (2003).
  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Ann. Rev. Immunol. 12, 433–455 (1994).
  • Ling MM. Large antibody display libraries for isolation of high-affinity antibodies. Comb. Chem. High Throughput Screen. 6(5), 421–432 (2003).
  • Amstutz P, Forrer P, Zahnd C, Pluckthun A. In vitro display technologies: novel developments and applications. Curr. Opin. Biotechnol. 12(4), 400–405 (2001).
  • Conway T, Schoolnik GK. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol. Microbiol. 47(4), 879–889 (2003).
  • Eisen MB, Brown PO. DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999).
  • Velculescu VE, Madden SL, Zhang L et al. Analysis of human transcriptomes. Nature Genet. 23(4), 387–388 (1999).
  • van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347(25), 1999–2009 (2002).
  • Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nature Med. 10(12), 1390–1396 (2004).
  • Paweletz CP, Charboneau L, Bichsel VE et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16), 1981–1989 (2001).
  • Bobrow MN, Litt GJ, Shaughnessy KJ, Mayer PC, Conlon J. The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J. Immunol. Methods 150(1–2), 145–149 (1992).
  • Charboneau L, Scott H, Chen T et al. Utility of reverse phase protein arrays: applications to signaling pathways and human body arrays. Brief Funct. Genomic Proteomic 1(3), 305–315 (2002).
  • Wulfkuhle JD, Aquino JA, Calvert VS et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3(11), 2085–2090 (2003).
  • Nishizuka S, Charboneau L, Young L et al. Proteomic profiling of the NCI-60 cencer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA 100(24), 14229–14234 (2003).
  • Herrmann PC, Gillespie JW, Charboneau L et al. Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics 3(9), 1801–1810 (2003).
  • Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc. Natl Acad. Sci. USA 100(16), 9330–9335 (2003).
  • Diks SH, Kok K, O’Toole T et al. Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. J. Biol. Chem. 279(47), 49206–49213 (2004).
  • Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell. Biol. 4(6), 457–467 (2003).
  • Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002).
  • Chen M, Cooper JA. Ser-3 is important for regulating Mos interaction with and stimulation of mitogen-activated protein kinase kinase. Mol. Cell. Biol. 15(9), 4727–4734 (1995).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000).
  • Zhou T, Aumais JO, Liu X, Yu-lee LY, Erikson RL. A role for Pik1 phosphorylation of NudC in cytokinesis. Dev. Cell 5(1), 127–138 (2003).
  • Irish JM, Hovland R, Krutzik PO et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118(2), 217–228 (2004).
  • Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27(10), 514–520 (2002).
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 298(5600), 1912–1934 (2002).
  • Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc. Natl Acad. Sci. USA 101(32), 11707–11712 (2004).
  • Diks SH, Peppelenbosch MP. Single cell proteomics for personalized medicine. Trends Mol. Medicine 10(12), 574–577 (2004).

Website

  • BioPharmaceutical Glossary, Taxonomies www.genomicglossaries.com (Viewed July 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.