387
Views
77
CrossRef citations to date
0
Altmetric
Review

Proteomic identification of biomarkers of traumatic brain injury

, , , , , , & show all
Pages 603-614 | Published online: 09 Jan 2014

References

  • Choi SC, Bullock R. Design and statistical issues in multicenter trials of severe head injury. Neurol. Res. 23(2–3), 190–192 (2001).
  • Doppenberg EM, Choi SC, Bullock R. Clinical trials in traumatic brain injury. What can we learn from previous studies? Ann. NY Acad. Sci. 825, 305–22 (1997).
  • Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 45(7), 1253–1260 (1995).
  • Choi DW. Exploratory clinical testing of neuroscience drugs. Nature Neurosci. 5(Suppl.), 1023–1025 (2002).
  • Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J. Neurotrauma 22(1), 3–41 (2005).
  • Teasdale GM, Pettigrew LE, Wilson JT, Murray G, Jennett B. Analyzing outcome of treatment of severe head injury: a review and update on advancing the use of the Glasgow Outcome Scale. J. Neurotrauma 15(8), 587–597 (1998).
  • Mitchener A, Wyper DJ, Patterson J et al. SPECT, CT, and MRI in head injury: acute abnormalities followed up at six months. J. Neurol. Neurosurg. Psychiatr. 62(6), 633–636 (1997).
  • Kant R, Smith-Seemiller L, Isaac G, Duffy J. Tc-HMPAO SPECT in persistent post-concussion syndrome after mild head injury: comparison with MRI/CT. Brain Inj. 11(2), 115–124 (1997).
  • Jacobs A, Put E, Ingels M, Put T, Bossuyt A. One-year follow-up of technetium-99m-HMPAO SPECT in mild head injury. J. Nucl. Med. 37(10), 1605–1609 (1996).
  • Levi L, Guilburd JN, Lemberger A, Soustiel JF, Feinsod M. Diffuse axonal injury: analysis of 100 patients with radiological signs. Neurosurgery 27(3), 429–432 (1990).
  • Kesler SR, Adams HF, Bigler ED. SPECT, MR and quantitative MR imaging: correlates with neuropsychological and psychological outcome in traumatic brain injury. Brain Inj.14(10), 851–857 (2000).
  • Furlan A, Higashida R, Wechsler L et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 282(21), 2003–2011 (1999).
  • Pike BR, Flint J, Johnson E et al. Accumulation of calpain-cleaved non-erythroid αII-spectrin in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem. 78, 1297–1306 (2001).
  • Davidsson P, Westman-Brinkmalm A, Nilsson CL et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. NeuroReport 13(5), 611–615 (2002).
  • Raabe A, Menon DK, Gupta S, Czosnyka M, Pickard JD. Jugular venous and arterial concentrations of serum S-100B protein in patients with severe head injury: a pilot study. J. Neurol. Neurosurg. Psychiatr. 65, 930–932 (2002).
  • Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain injury: serum S-100 measurements related to neuroradiological findings. J. Neurotrauma 17, 641–647 (2000).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues – novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243 (1975).
  • O’Farrell PH. High-resolution 2-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).
  • Boguslavsky J. Resolving the proteome by relying on 2DE methods. Drug Discov. Develop. 6(7), 57–60 (2003).
  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods 6, 317–339 (1982).
  • Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–546 (1988).
  • Jungblut P, Thiede B, Zimny-Arndt U, Muller EC, Scheler C, Wittmann-Liebold B. Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 17, 839–847 (1996).
  • Fountoulakis M, Schuller E, Hardmeier R, Berndt P, Lubec G. Rat brain proteins: two-dimensional protein database and variations in the expression level. Electrophoresis 20(18), 3572–3579 (1999).
  • Appel RD, Bairoch A, Hochstrasser DF. 2-D databases on the worldwide web. In: Methods in Molecular Biology, Volume 112, 2-D Proteome Analysis Protocols. Link AJ (Ed.), Humana Press Inc., NJ, USA, 383–391 (1999).
  • Lemkin PF. Comparing two-dimensional electrophoretic gel images across the internet. Electrophoresis 18, 2759–2773 (1997).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11), 2071–2077 (1997).
  • Patton WF. Detection technologies in proteome analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771(1–2), 3–31 (2002).
  • Yan JX, Devenish AT, Wait R, Stone T, Lewis S, Fowler S. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2(12), 1682–1698 (2002).
  • Jenkins LW, Peters GW, Dixon CE et al. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 h after controlled cortical impact in postnatal day 17 rats. J. Neurotrauma 19(6), 715–740 (2002).
  • Schäfer H, Marcus K, Sickmann A, Herrmann M, Klose J, Meyer HE. Identification of phosphorylation and acetylation sites in α A-crystallin of the eye lens (mus musculus) after two-dimensional gel electrophoresis. Anal. Bioanal. Chem. 376(7), 966–972 (2003).
  • Janssen D. Major approaches to identifying key PTMs. Genomics and Proteomics 3(1), 38–41 (2003).
  • Peng J, Gygi SP. Proteomics: the move to mixtures. J. Mass Spectrom. 36(10), 1083–1091 (2001).
  • Adkins JN, Varnum SM, Auberry KJ et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1(12), 947–955 (2002).
  • Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 4(5), 489–494 (2000).
  • Denslow N, Michel ME, Temple MD, Hsu CY, Saatman K, Hayes RL. Application of proteomics technology to the field of neurotrauma. J. Neurotrauma 20(5), 401–407 (2003).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).
  • James P. Chips for proteomics; a new tool or just hype? Biotechniques (Suppl.), 4–10, 12–13 (2002).
  • Kusnezow W, Hoheisel JD. Antibody microarrays: promises and problems. Biotechniques (Suppl.), 14–23 (2002).
  • Moody MD. Array-based ELISAs for high-throughput analysis of human cytokines. Biotechniques 31, 186–194 (2001).
  • Graslund S, Falk R, Brundell E, Hoog C, Stahl S. A high-stringency proteomics concept aimed for generation of antibodies specific for cDNA-encoded proteins. Biotechnol. Appl. Biochem. 35(Pt 2), 75–82 (2002).
  • Forman JE, Suseno AD, Wagner P. Surface and printing effects on fluorescent images of immobilized biomolecule arrays. Methods Enzymol. 361, 530–548 (2003).
  • Wang KKW, Liu MC, Hayes RL. Calpain degradome: a unique subset of traumatic brain injury proteome. 3rd General Meeting of the International Proteolysis Society, Nagoya, Japan (2003) (Abstract).
  • Pineda JA, Wang KKW, Hayes RL. Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 14, 202–209 (2004).
  • Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 30(6), 1190–1195 (1999).
  • Raabe A, Seifert V. Protein S-100B as a serum marker of brain damage in severe head injury: preliminary results. Neurosurg. Rev. 23(3), 136–138 (2000).
  • Persson L, Hardemark HG, Gustafsson J et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke 18(5), 911–918 (1987).
  • Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery 49, 1272–1273 (2001).
  • Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood–brain barrier damage. Clin. Chim. Acta 342(1–2), 1–12 (2004).
  • Fazio V, Bhudia S, Marchi N, Aumayr B, Janigro D. Peripheral detection of S100β during cardiothoracic surgery: what are we really measuring? Ann. Thorac. Surg. 78, 46–53 (2004).
  • Mussack T, Biberthaler P, Kanz KG et al. Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock 18, 395–400 (2002).
  • Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur. J. Clin. Invest. 26(4), 298–303 (1996).
  • Horn M, Seger F, Schlote W. Neuron-specific enolase in gerbil brain and serum after transient cerebral ischaemia. Stroke 26(2), 290–296; Discussion 296–297 (1995).
  • Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A. Comparison of serial S-100 and NSE serum measurement after severe head injury. Acta Neurochir. (Wein) 139, 1161–1165 (1997).
  • Cooper E. Neuron-specific enolase. Int. J. Biol. Markers 9(4), 205–210 (1994).
  • Ingebrigtsen T, Romner B, Trumpy JH. Management of minor head injury: the value of early CT and serum protein S-100 measurements. J. Clin. Neurosci. 4, 29–33 (1997).
  • Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg. Neurol. 43, 267–271 (1997).
  • Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br. J. Neurosurg. 10, 471–476 (1996).
  • Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 28(10), 1956–1960 (1997).
  • Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1(8056), 113–115 (1978).
  • Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg. Neurol. 43(3), 267–270; Discussion 270–271 (1995).
  • Dietrich WD, Truettner J, Zhao W, Alonso OF, Busto R, Ginsberg MD. Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluid-percussion brain injury in rats. J. Neurotrauma 16(7), 567–581 (1999).
  • Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S-100B in serum after traumatic brain injury: relationship to brain damage and outcome. J. Neurotrauma 21(11), 1553–1561 (2004).
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res. 987(1), 25–31 (2003).
  • Posmantur R, Hayes RL, Dixon CE, Taft WC. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J. Neurotrauma 11, 533–545 (1994).
  • Van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J. Immunol. Methods 296(1–2), 179–185 (2005).
  • Shaw GJ, Jauch EC, Zemlan FP. Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann. Emerg. Med. 39, 254–257 (2002).
  • Zemlan FP, Jauch EC, Mulchahey JJ et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 947, 131–139 (2002).
  • Ringger NC, O’Steen BE, Brabham JG et al. A novel marker for traumatic brain injury: CSF α II-spectrin breakdown product levels. J. Neurotrauma. 1443–1456 (2004).
  • Siman R, McIntosh TK, Soltesz KM, Chen Z, Neumar RW, Roberts VL. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol. Dis. 16(2), 311–320 (2004).
  • Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-d-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin. Chem. 49(10), 1752–1762 (2003).
  • Hanash S. HUPO initiatives relevant to clinical proteomics. Mol. Cell. Proteomics 3(4), 298–301 (2004).
  • Meyer HE, Klose J, Hamacher M. HBPP and the pursuit of standardisation. Lancet Neurol. 2, 657–658 (2003).
  • Haskins WE, Kobeissy FH, Wolper RA et al. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J. Neurotrauma 22(6), 629–644 (2005).
  • Ottens AK, Kobeissy FH, Golden EC et al. Systematic mass spectrometry based approach to biomarker discovery in traumatic brain injury. 53rd American Society for Mass Spectrometry Conference, San Antonio, TX, USA (2005) (Abstract).
  • Kobeissy FH, Ottens AK, Warren MW, Zhang ZQ, Gold MS, Wang KKW. Comparison between traumatic brain injury and methamphetamine abuse induced brain injury: a neuroproteomics approach utilizing an innovative and powerful multidimensional separation scheme for neuroproteomics analysis. The First Stowe Symposium on Separation Science in System Biology, ‘Biomarkers From proteins to Patients’, May 15–18, 2005, NE, USA (2005) (Abstract).
  • Wang KKW, Ottens AK, Haskins WE et al. Neuroproteomic studies of traumatic brain injury in human brain proteome. Int. Rev. Neurobiol. 61, 215–240 (2004).

Website

  • Centers for Disease Control and Prevention – TBI Outcomes and Consequences www.cdc.gov/node.do/id/0900f3ec8000dbdc/aspectId/A0400027 (Viewed July 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.