51
Views
5
CrossRef citations to date
0
Altmetric
Review

Emerging challenges in ligand discovery: new opportunities for chromatographic assay

&
Pages 891-900 | Published online: 09 Jan 2014

References

  • Meyer AL. Prospects and challenges of developing new agents for tough Gram-negatives. Curr. Opin. Pharmacol. 5(5), 490–494 (2005).
  • Nwaka S. Drug discovery and beyond: the role of public–private partnerships in improving access to new malaria medicines. Trans. R Soc. Trop. Med. Hyg. 99(Suppl. 1), S20–S29 (2005).
  • Betz UA. How many genomics targets can a portfolio afford? Drug Discov. Today 10(15), 1057–1063 (2005).
  • Verkman AS. Drug discovery in academia. Am. J. Physiol. Cell Physiol. 286(3), C465–C474 (2004).
  • Posner BA. High-throughput screening-driven lead discovery: meeting the challenges of finding new therapeutics. Curr. Opin. Drug Discov. Devel. 8(4), 487–494 (2005).
  • Ganter B, Tugendreich S, Pearson CI et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. 119(3), 219–244 (2005).
  • Fitzgerald K. RNAi versus small molecules: different mechanisms and specificities can lead to different outcomes. Curr. Opin. Drug Discov. Devel. 8, 557–566 (2005).
  • Bartz S, Jackson AL. How will RNAi facilitate drug development? Sci. STKE 2005(295), pe39 (2005).
  • Mitchison TJ. Towards a pharmacological genetics. Chem. Biol. 1(1), 3–6 (1994).
  • Mitchison TJ, Salmon ED. Mitosis: a history of division. Nature Cell Biol. 3(1), E17–E21 (2001).
  • Haggarty SJ, Koeller KM, Wong JC, Butcher RA, Schreiber SL. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10(5), 383–396 (2003).
  • Koeller KM, Haggarty SJ, Perkins BD et al. Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chem. Biol. 10(5), 397–410 (2003).
  • Rininsland F, Stankewicz C, Weatherford W, McBranch D. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching. BMC Biotechnol. 5(1), 16 (2005).
  • Toledo-Sherman L, Deretey E, Slon-Usakiewicz JJ et al. Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J. Med. Chem. 48(9), 3221–3230 (2005).
  • Hirai H, Kawanishi N, Iwasawa Y. Recent advances in the development of selective small molecule inhibitors for cyclin-dependent kinases. Curr. Top. Med. Chem. 5(2), 167–179 (2005).
  • Griffin RJ, Fontana G, Golding BT et al. Selective benzopyranone and pyrimido [2,1-a]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro. J. Med. Chem. 48(2), 569–585 (2005).
  • Chuaqui C, Deng Z, Singh J. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening. J. Med. Chem. 48(1), 121–133 (2005).
  • Schuffenhauer A, Ruedisser S, Marzinzik AL et al. Library design for fragment based screening. Curr. Top. Med. Chem. 5(8), 751–762 (2005).
  • Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE. Neighborhood behavior: a useful concept for validation of ‘molecular diversity’ descriptors. J. Med. Chem. 39(16), 3049–3059 (1996).
  • Clardy J, Walsh C. Lessons from natural molecules. Nature 432(7019), 829–837 (2004).
  • Clark AM. Natural products as a resource for new drugs. Pharm. Res. 13(8), 1133–1144 (1996).
  • Ortholand JY, Ganesan A. Natural products and combinatorial chemistry: back to the future. Curr. Opin. Chem. Biol. 8(3), 271–280 (2004).
  • Ye XS, Wong CH. Anomeric reactivity-based one-pot oligosaccharide synthesis: a rapid route to oligosaccharide libraries. J. Org. Chem. 65(8), 2410–2431 (2000).
  • Sweetnam PM, Price CH, Ferkany JW. Burger’s Medicinal Chemistry and Drug Discovery. Principles and Practice. Vol. 1. Wolff ME (Ed.), John Wiley & Sons, NY, USA 349–397 (1995).
  • Hill DC. Trends in development of high-throughput screening technologies for rapid discovery of novel drugs. Curr. Opin. Drug Discov. Devel. 1(1), 92–97 (1998).
  • Hage DS. Affinity chromatography: a review of clinical applications. Clin. Chem. 45(5), 593–615 (1999).
  • Lewis LM, Engle LJ, Pierceall WE, Hughes DE, Shaw K. Affinity capillary electrophoresis analyses of protein–protein interactions in target-directed drug discovery. Methods Mol. Biol. 261, 187–198 (2004).
  • Guiochon G, Shirazi SG, Katti AM. Fundamentals of Preparative and Nonlinear Chromatography. Academic Press, The Netherlands (1994).
  • Kelly MA, Liang H, Sytwu II et al. Characterization of SH2-ligand interactions via library affinity selection with mass spectrometric detection. Biochemistry 35(36), 11747–11755 (1996).
  • Cancilla MT, Leavell MD, Chow J, Leary JA. Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries. Proc. Natl Acad. Sci. USA 97(22), 12008–12013 (2000).
  • Geoghegan KF, Kelly MA. Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom. Rev. 24(3), 347–366 (2005).
  • Siegel MM. Early discovery drug screening using mass spectrometry. Curr. Top. Med. Chem. 2(1), 13–33 (2002).
  • Nedelkov D, Nelson RW. Surface plasmon resonance mass spectrometry: recent progress and outlooks. Trends Biotechnol. 21(7), 301–305 (2003).
  • Sünksen CP, Markgren P-O, Danielson UH, Hämäläinen MD, Jansson O, Roepstorff P. Capture and analysis of low molecular weight ligands by surface plasmon resonance combined with mass spectrometry. Eur. J. Mass Spectrom. 7, 385–391 (2001).
  • Hage DS, Nelson MA. Chromatographic immunoassays. Anal. Chem. 73(7), 199A–205A (2001).
  • Jozwiak K, Haginaka J, Moaddel R, Wainer IW. Displacement and nonlinear chromatographic techniques in the investigation of interaction of noncompetitive inhibitors with an immobilized α3β4 nicotinic acetylcholine receptor liquid chromatographic stationary phase. Anal. Chem. 74(18), 4618–4624 (2002).
  • Lu L, Leonessa F, Clarke R, Wainer IW. Competitive and allosteric interactions in ligand binding to P-glycoprotein as observed on an immobilized P-glycoprotein liquid chromatographic stationary phase. Mol. Pharmacol. 59(1), 62–68 (2001).
  • Moaddel R, Wainer IW. Immobilized nicotinic receptor stationary phases: going with the flow in high-throughput screening and pharmacological studies. J. Pharm. Biomed. Anal. 30(6), 1715–1724 (2003).
  • Moaddel R, Jozwiak K, Whittington K, Wainer IW. Conformational mobility of immobilized α3β2, α3β4, α4β2, and α4β4 nicotinic acetylcholine receptors. Anal. Chem. 77(3), 895–901 (2005).
  • Moaddel R, Cloix JF, Ertem G, Wainer IW. Multiple receptor liquid chromatographic stationary phases: the co-immobilization of nicotinic receptors, γ-amino-butyric acid receptors, and N-methyl D-aspartate receptors. Pharma. Res. 19(1), 104–107 (2002).
  • Kaur S, McGuire L, Tang D, Dollinger G, Huebner V. Affinity selection and mass spectrometry-based strategies to identify lead compounds in combinatorial libraries. J. Protein Chem. 16(5), 505–511 (1997).
  • Huyer G, Kelly J, Moffat J et al. Affinity selection from peptide libraries to determine substrate specificity of protein tyrosine phosphatases. Anal. Biochem. 258(1), 19–30 (1998).
  • Annis DA, Nazef N, Chuang CC, Scott MP, Nash HM. A general technique to rank protein–ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures. J. Am. Chem .Soc. 126(47), 15495–15503 (2004).
  • Annis DA, Athanasopoulos J, Curran PJ et al. An affinity selection-mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries. Discovery of a novel antagonist of E. coli dihydrofolate reductase. Int. J. Mass Spectrom. 238, 77–83 (2004).
  • Kasai K, Oda YJ. Frontal affinity chromatography: theory for its application to studies on specific interaction of biomolecules. J. Chromatogr. 376, 33–47 (1986).
  • Schriemer DC, Yalcin T, Li L. Micro-scale frontal affinity chromatography with mass spectrometric detection: a new method for the screening of compound libraries. Angew Chem. Int. Ed. 37(24), 3387–3388 (1998).
  • Schriemer DC. Biosensor alternative: frontal affinity chromatography. Anal. Chem. 76(23), 440A–448A (2004).
  • Chan NW, Lewis DF, Rosner PJ, Kelly MA, Schriemer DC. Frontal affinity chromatography-mass spectrometry assay technology for multiple stages of drug discovery: applications of a chromatographic biosensor. Anal. Biochem. 319(1), 1–12 (2003).
  • Chan NW, Lewis DF, Hewko S, Hindsgaul O, Schriemer DC. Frontal affinity chromatography for the screening of mixtures. Comb. Chem. High Throughput Screen. 5(5), 395–406 (2002).
  • Slon-Usakiewicz JJ, Dai JR, Ng W et al. Global kinase screening. Applications of frontal affinity chromatography coupled to mass spectrometry in drug discovery. Anal. Chem. 77(5), 1268–1274 (2005).
  • Leitao A, Li M, Rodrigues A. The role of intraparticle convection in protein adsorption by liquid chromatography using POROS 20 HQ/M particles. Biochem. Eng. J. 11, 33–48 (2002).
  • Winzor DJ, Sawyer WH. Quantitative Characterization of Ligand Binding. John Wiley & Sons, NY, USA (1995).
  • Soltes L, Mach M. Estimation of drug–protein binding parameters on assuming the validity of thermodynamic equilibrium. J. Chromatogr. B 768, 113–119 (2002).
  • Chen J, Hage DS. Quantitative analysis of allosteric drug–protein binding by biointeraction chromatography. Nature Biotechnol. 22(11), 1445–1448 (2004).
  • Tweed SA, Loun B, Hage DS. Effects of ligand heterogeneity in the characterization of affinity columns by frontal analysis. Anal. Chem. 69(23), 4790–4798 (1997).
  • Slon-Usakiewicz JJ, Ng W, Dai JR, Pasternak A, Redden PR. Frontal affinity chromatography with MS detection (FAC-MS) in drug discovery. Drug Discov. Today 10(6), 409–416 (2005).
  • Gottschalk I, Li YM, Lundahl P. Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads. J. Chromatogr. B Biomed. Sci. Appl. 739(1), 55–62 (2000).
  • Hodgson RJ, Chen Y, Zhang Z et al. Protein-doped monolithic silica columns for capillary liquid chromatography prepared by the sol-gel method: applications to frontal affinity chromatography. Anal. Chem. 76(10), 2780–2790 (2004).
  • Kovarik P, Hodgson RJ, Covey T, Brook MA, Brennan JD. Capillary-scale frontal affinity chromatography/MALDI tandem mass spectrometry using protein-doped monolithic silica columns. Anal. Chem. 77(10), 3340–3350 (2005).
  • Ng ES, Yang F, Kameyama A, Palcic MM, Hindsgaul O, Schriemer DC. High throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Anal. Chem. 77(19), 6125–6133 (2005).
  • Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nature Rev. Drug Discov. 4(3), 206–220 (2005).
  • Carr RA, Congreve M, Murray CW, Rees DC. Fragment-based lead discovery: leads by design. Drug Discov. Today 10(14), 987–992 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.