128
Views
27
CrossRef citations to date
0
Altmetric
Review

Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries

&
Pages 937-947 | Published online: 09 Jan 2014

References

  • Dyrskjot L, Zieger K, Kruhoffer M et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).
  • DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).
  • Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).
  • Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).
  • Kobe B, Kemp BE. Active site-directed protein regulation. Nature 402, 373–376 (1999).
  • International Human GenomeSequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).
  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).
  • Iyer VR, Horak CE, Scafe CS et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).
  • Lee TI, Rinaldi NJ, Robert F et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).
  • Robyr D, Suka Y, Xenarios I et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446 (2002).
  • Salomon AR, Ficarro SB, Brill LM et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl Acad. Sci. USA 100, 443–448 (2003).
  • Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nature Methods 2, 17–25 (2005).
  • Tam EM, Morrison CJ, Wu YI, Stack MS, Overall CM. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Natl Acad. Sci. USA 101, 6917–6922 (2004).
  • Carpenter AE, Sabatini DM. Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22 (2004).
  • Wheeler DB, Carpenter AE, Sabatini DM. Cell microarrays and RNA interference chip away at gene function. Nature Genet. 37, S25–S30 (2005).
  • Clardy J, Walsh C. Lessons from natural molecules. Nature 432, 829–837 (2004).
  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
  • Abbenante G, Fairlie DP. Protease inhibitors in the clinic. Med. Chem. 1, 71–104 (2005).
  • Kam CM, Abuelyaman AS, Li, Z, Hudig D, Powers JC. Biotinylated isocoumarins, new inhibitors and reagents for detection, localization, and isolation of serine proteases. Bioconjugate Chem. 4, 560–567 (1993).
  • Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699. (1999).
  • Kidd D, Liu Y, Cravatt BF. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).
  • Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).
  • Greenbaum D, Baruch A, Hayrapetian L et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).
  • Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl Acad. Sci. USA 101, 10000–10005 (2004).
  • Lo L-C, Pang TL, Kuo CH, Chiang YL, Wang HY, Lin JJ. Design and synthesis of class-selective activity probes for protein tyrosine phosphatases. J. Proteome Res. 1, 35–40 (2002).
  • Tsai CS, Li YK, Lo LC. Design and synthesis of activity probes for glycosidases. Org. Lett. 4, 3607–3610 (2002).
  • Adam G, Sorensen EJ, Cravatt BF. Proteomic profiling of mechanistically distinct enzyme classes using common chemotype. Nature Biotechnol. 20, 805–809 (2002).
  • Adam GC, Burbaum, J, Kozarich JW, Patricelli MP, Cravatt BF. Mapping enzyme active sites in complex proteomes. J. Am. Chem. Soc. 126, 1363–1368 (2004).
  • Jessani N, Liu Y, Humphrey M, Cravatt BF. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).
  • Greenbaum DC, Baruch A, Grainger M et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).
  • Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).
  • Salisbury CM, Maly DJ, Ellman JA. Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Sci. 124, 14868–14870 (2002).
  • Houseman BT, Mrksich M. Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol. 20, 279–281 (2002).
  • Lesaicherre M-L, Uttamchandani, M, Chen GYJ, Yao SQ. Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett. 12, 2085–2088 (2002).
  • Min DH, Su J, Mrksich M. Profiling kinase activities by using a peptide chip and mass spectrometry. Angew. Chem. Int. Ed. 43, 5973–5977 (2004).
  • Schutkowski M, Reimer U, Panse S et al. Automated synthesis: high-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Ed. 43, 2671–2674 (2004).
  • Nielsen PE, Egholm, M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with thyamine-substituted polyamide. Science 254, 1497–1500 (1991).
  • Egolm M, Buchardt O, Christensen L et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).
  • Winssinger N, Harris JL, Backes BJ, Schultz PG. From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Int. Ed. 40, 3152–3155 (2001).
  • Winssinger N, Ficarro S, Schultz PG, Harris JL. Profiling protein function with small molecule microarrays. Proc. Natl Acad. Sci. USA 99, 11139–11144 (2002).
  • Debaene F, Mejias, L, Harris JL, Winssinger N. Synthesis of a PNA-encoded cysteine protease inhibitor library. Tetrahedron 60, 8677–8690 (2004).
  • Harris J, Mason DE, Li J et al. Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. Chem. Biol. 11, 1361–1372 (2004).
  • Winssinger N, Damoiseaux R, Tully DC, Geierstanger BH, Burdick K, Harris JL. PNA-encoded protease substrate microarrays. Chem. Biol. 11, 1351–1360 (2004).
  • Harris JL, Winssinger N. PNA encoding: from solution based libraries to organized microarrays. Chem. Eur. J. 11, 6792–6801 (2005).
  • Demidov VV. New kids on the block: emerging PNA-based DNA diagnostics. Expert. Rev. Mol. Diagn. 2, 199–201 (2002).
  • Demidov VV, Potaman VN, Frank-Kamenetskii MD et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).
  • Nielsen PE. Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res. 32, 624–630 (1999).
  • Leytus SP, Patterson WL, Mangel WF. New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine. Biochem. J. 215, 253–260 (1983).
  • Diaz-Mochon JJ, Bialy, L, Keinicke L, Bradley M. Combinatorial libraries – from solution to 2D microarrays. Chem. Commun. 1384–1386 (2005).
  • Platts-Mills TA, Carter MC. Asthma and indoor exposure to allergens. N. Engl. J. Med. 336, 1382–1384 (1997).
  • Shakib F, Furmonaviciene R. The significance of enzymic and other biological activities of proteins in relation to their capacity to serve as allergens. Clin. Exp. Allergy 30, 1056–1057 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.