517
Views
21
CrossRef citations to date
0
Altmetric
Review

MALDI imaging mass spectrometry and analysis of endogenous peptides

&
Pages 381-388 | Published online: 09 Jan 2014

References

  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60(20), 2299–2301 (1988).
  • Tanaka K, Waki H, Ido I et al. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988).
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69(23), 4751–4760 (1997).
  • Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113(4), 2309–2342 (2013).
  • Binder EB, Kinkead B, Owens MJ, Nemeroff CB. Neurotensin and dopamine interactions. Pharmacol. Rev. 53(4), 453–486 (2001).
  • Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. Prog. Brain Res. 161, 97–109 (2007).
  • Rossbach U, Nilsson A, Fälth M et al. A quantitative peptidomic analysis of peptides related to the endogenous opioid and tachykinin systems in nucleus accumbens of rats following naloxone-precipitated morphine withdrawal. J. Proteome Res. 8(2), 1091–1109 (2009).
  • Feng Y, Reznik SE, Fricker LD. Distribution of proSAAS-derived peptides in rat neuroendocrine tissues. Neuroscience 105(2), 469–478 (2001).
  • Wada M, Ren CH, Koyama S et al. A human granin-like neuroendocrine peptide precursor (proSAAS) immunoreactivity in tau inclusions of Alzheimer's disease and parkinsonism-dementia complex on Guam. Neurosci. Lett. 356(1), 49–52 (2004).
  • Taban IM, Altelaar AF, van der Burgt YE et al. Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 18(1), 145–151 (2007).
  • Cornett DS, Frappier SL, Caprioli RM. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 80(14), 5648–5653 (2008).
  • Calligaris D, Longuespée R, Debois D et al. Selected protein monitoring in histological sections by targeted MALDI-FTICR in-source decay imaging. Anal. Chem. 85(4), 2117–2126 (2013).
  • Gámez-Pozo A, Sánchez-Navarro I, Calvo E et al. PTRF/cavin-1 and MIF proteins are identified as non-small cell lung cancer biomarkers by label-free proteomics. PLoS One 7(3), e33752 (2012).
  • Masui O, White NM, Desouza LV et al. Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol. Cell. Proteomics 12(1), 132–144 (2013).
  • Moi LL, Flågeng MH, Gjerde J et al. Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer. BMC Cancer 12, 247 (2012).
  • Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM. Integrating histology and imaging mass spectrometry. Anal. Chem. 76(4), 1145–1155 (2004).
  • Chaurand P, Cornett DS, Angel PM, Caprioli RM. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol. Cell. Proteomics 10(2), O110.004259 (2011).
  • Deutskens F, Yang J, Caprioli RM. High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J. Mass Spectrom. 46(6), 568–571 (2011).
  • Spengler B, Hubert M. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J. Am. Soc. Mass Spectrom. 13(6), 735–748 (2002).
  • Pól J, Vidová V, Hyötyläinen T et al. Spatial distribution of glycerophospholipids in the ocular lens. PLoS One 6(4), e19441 (2011).
  • Casadonte R, Caprioli RM. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 6(11), 1695–1709 (2011).
  • Ronci M, Bonanno E, Colantoni A et al. Protein unlocking procedures of formalin-fixed paraffin-embedded tissues: application to MALDI-TOF imaging MS investigations. Proteomics 8(18), 3702–3714 (2008).
  • Ergin B, Meding S, Langer R et al. Proteomic analysis of PAXgene-fixed tissues. J. Proteome Res. 9(10), 5188–5196 (2010).
  • Amstalden van Hove ER, Smith DF, Heeren RM. A concise review of mass spectrometry imaging. J. Chromatogr. A. 1217(25), 3946–3954 (2010).
  • Wang HY, Jackson SN, Post J, Woods AS. A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain sections. Int. J. Mass Spectrom. 278(2–3), 143–149 (2008).
  • Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38(7), 699–708 (2003).
  • Aerni HR, Cornett DS, Caprioli RM. Automated acoustic matrix deposition for MALDI sample preparation. Anal. Chem. 78(3), 827–834 (2006).
  • Nakanishi T, Ohtsu I, Furuta M, Ando E, Nishimura O. Direct MS/MS analysis of proteins blotted on membranes by a matrix-assisted laser desorption/ionization-quadrupole ion trap-time-of-flight tandem mass spectrometer. J. Proteome Res. 4(3), 743–747 (2005).
  • Rauser S, Marquardt C, Balluff B et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J. Proteome Res. 9(4), 1854–1863 (2010).
  • Yamada Y, Hidefumi K, Shion H, Oshikata M, Haramaki Y. Distribution of chloroquine in ocular tissue of pigmented rat using matrix-assisted laser desorption/ionization imaging quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 25(11), 1600–1608 (2011).
  • Yang J, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal. Chem. 83(14), 5728–5734 (2011).
  • Trimpin S, Herath TN, Inutan ED et al. Automated solvent-free matrix deposition for tissue imaging by mass spectrometry. Anal. Chem. 82(1), 359–367 (2010).
  • Kuwayama K, Tsujikawa K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H. Distribution measurements of 3,4-methylenedioxymethamphetamine and its metabolites in organs by matrix-assisted laser desorption/ionization imaging mass spectrometry using an automatic matrix spraying system with an air brush and a turntable. Anal. Bioanal. Chem. 404(6–7), 1823–1830 (2012).
  • Marko-Varga G, Fehniger TE, Rezeli M, Döme B, Laurell T, Végvári A. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J. Proteomics 74(7), 982–992 (2011).
  • Eikel D, Vavrek M, Smith S et al. Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example. Rapid Commun. Mass Spectrom. 25(23), 3587–3596 (2011).
  • Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit. Rev. Biochem. Mol. Biol. 48(1), 20–38 (2013).
  • Chughtai K, Jiang L, Greenwood TR, Glunde K, Heeren RM. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J. Lipid Res. 54(2), 333–344 (2013).
  • Cerruti CD, Benabdellah F, Laprévote O, Touboul D, Brunelle A. MALDI imaging and structural analysis of rat brain lipid negative ions with 9-aminoacridine matrix. Anal. Chem. 84(5), 2164–2171 (2012).
  • Lemaire R, Menguellet SA, Stauber J et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J. Proteome Res. 6(11), 4127–4134 (2007).
  • Mainini V, Bovo G, Chinello C et al. Detection of high molecular weight proteins by MALDI imaging mass spectrometry. Mol. Biosyst. 9, 1101–1107 (2013).
  • Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM. Protein signatures for survival and recurrence in metastatic melanoma. J. Proteomics 74(7), 1002–1014 (2011).
  • Groseclose MR, Massion PP, Chaurand P, Caprioli RM. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8(18), 3715–3724 (2008).
  • Franck J, Ayed ME, Wisztorski M, Salzet M, Fournier I. On tissue protein identification improvement by N-terminal peptide derivatization. Methods Mol. Biol. 656, 323–338 (2010).
  • Schober Y, Guenther S, Spengler B, Römpp A. High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun. Mass Spectrom. 26(9), 1141–1146 (2012).
  • Djidja MC, Francese S, Loadman PM et al. Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9(10), 2750–2763 (2009).
  • Quanico J, Franck J, Dauly C et al. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J. Proteomics 79C, 200–218 (2013).
  • Källback P, Shariatgorji M, Nilsson A, Andrén PE. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J. Proteomics 75(16), 4941–4951 (2012).
  • Hanrieder J, Ljungdahl A, Fälth M, Mammo SE, Bergquist J, Andersson M. L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol. Cell. Proteomics 10(10), M111.009308 (2011).
  • Bruand J, Sistla S, Mériaux C et al. Automated querying and identification of novel peptides using MALDI mass spectrometric imaging. J. Proteome Res. 10(4), 1915–1928 (2011).
  • Debois D, Bertrand V, Quinton L, De Pauw-Gillet MC, De Pauw E. MALDI-in source decay applied to mass spectrometry imaging: a new tool for protein identification. Anal. Chem. 82(10), 4036–4045 (2010).
  • Zucca FA, Giaveri G, Gallorini M et al. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res. 17(6), 610–617 (2004).
  • Carter CL, McLeod CW, Bunch J. Imaging of phospholipids in formalin fixed rat brain sections by matrix assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22(11), 1991–1998 (2011).
  • Spraggins JM, Caprioli RM. High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J. Am. Soc. Mass Spectrom. 22(6), 1022–1031 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.