329
Views
7
CrossRef citations to date
0
Altmetric
Review

Proteomics of human prostate cancer biospecimens: the global, systems-wide perspective for Protein markers with potential clinical utility

&
Pages 337-354 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Xu JQ, Ward E. Cancer Statistics, 2010. CA Cancer J. Clin. 60(5), 277–300 (2010).
  • Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7(2), 139–147 (2007).
  • Hammarsten J, Hogstedt B. Calculated fast-growing benign prostatic hyperplasia – A risk factor for developing clinical prostate cancer. Scand. J. Urol. Nephrol. 36(5), 330–338 (2002).
  • DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI. Pathological and molecular aspects of prostate cancer. Lancet 361(9361), 955–964 (2003).
  • De Marzo AM, DeWeese TL, Platz EA et al. Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. J. Cell Biochem. 91(3), 459–477 (2004).
  • Pfeffer U, Tosetti F, Ferrari N et al. Angioprevention: anti-angiogenesis as a critical target for cancer chemopreventive agents. Cancer Epidem. Biomar. 11(10), 1235S–1235S (2002).
  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J. Clin. 62(1), 10–29 (2012).
  • Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J. Clin. Oncol. 21(2), 383–391 (2003).
  • Thompson IM, Ankerst DP, Chi C et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294(1), 66–70 (2005).
  • Gittelman MC, Hertzman B, Bailen J et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J. Urol. 190(1), 64–69 (2013).
  • Chen Z, Sun J, Kim ST et al. Genome-wide association study identifies genetic determinants of urine PCA3 levels in men. Neoplasia 15(4), 448–453 (2013).
  • Augustin H, Mayrhofer K, Pummer K, Mannweiler S. Relationship between prostate cancer gene 3 (PCA3) and characteristics of tumor aggressiveness. Prostate 73(2), 203–210 (2013).
  • Blanchet KD. Redefining personalized medicine in the postgenomic era: developing bladder cancer therapeutics with proteomics. BJU Int. 105(2), i–iii (2010).
  • Vaezzadeh AR, Steen H, Freeman MR, Lee RS. Proteomics and opportunities for clinical translation in urological disease. J. Urol. 182(3), 835–843 (2009).
  • Stephan C, Jung K, Semjonow A et al. Comparative assessment of urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion with the serum [-2]proprostate-specific antigen-based prostate health index for detection of prostate cancer. Clin. Chem. 59(1), 280–288 (2013).
  • Crawford ED, Rove KO, Trabulsi EJ et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J. Urol. 188(5), 1726–1731 (2012).
  • Ochiai A, Okihara K, Kamoi K et al. Clinical utility of the prostate cancer gene 3 (PCA3) urine assay in Japanese men undergoing prostate biopsy. BJU Int. 111(6), 928–933 (2013).
  • Rodriguez H. Proteomics: a long and winding road to medical diagnostics. Expert Opin. Med. Diagn. 3(3), 219–225 (2009).
  • Urquidi V, Rosser CJ, Goodison S. Molecular diagnostic trends in urological cancer: biomarkers for non-invasive diagnosis. Curr. Med. Chem. 19(22), 3653–3663 (2012).
  • Artibani W. Landmarks in prostate cancer diagnosis: the biomarkers. BJU Int. 110(Suppl. 1), 8–13 (2012).
  • Sardana G, Diamandis EP. The kallikrein family of proteins as urinary biomarkers for the detection of prostate cancer. Clin. Biochem. 42(13–14), 1483–1486 (2009).
  • Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis 34(11), 1663–1669 (2013).
  • Konvalinka A, Scholey JW, Diamandis EP. Searching for new biomarkers of renal diseases through proteomics. Clin. Chem. 58(2), 353–365 (2012).
  • Pin E, Fredolini C, Petricoin EF 3rd. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin. Biochem. 46(6), 524–538 (2013).
  • Thongboonkerd V, Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics 5(4), 1033–1042 (2005).
  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Gen. Biol. 7(9), R80 (2006).
  • Sardana G, Diamandis EP. Biomarkers for the diagnosis of new and recurrent prostate cancer. Biomark. Med. 6(5), 587–596 (2012).
  • Stephan C, Vincendeau S, Houlgatte A, Cammann H, Jung K, Semjonow A. Multicenter evaluation of [-2]proprostate-specific antigen and the prostate health index for detecting prostate cancer. Clin. Chem. 59(1), 306–314 (2013).
  • Loeb S, Sokoll LJ, Broyles DL et al. Prospective multicenter evaluation of the Beckman Coulter Prostate Health Index using WHO calibration. J. Urol. 189(5), 1702–1706 (2013).
  • Lazzeri M, Haese A, de la Taille A et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2–10 ng/ml: a multicentric European study. Eur. Urol. 63(6), 986–994 (2013).
  • Rahbar A, Rivers R, Boja E et al. Realizing individualized medicine: the road to translating proteomics from the laboratory to the clinic. Pers. Med. 8(1), 45–57 (2011).
  • Adewale AJ, Liu Q, Dinu I, Lampe PD, Mitchell BL, Yasui Y. A cautionary note on the evaluation of biomarkers of subtypes of a single disease. Am. J. Epidemiol. 168(6), 559–562 (2008).
  • Turteltaub KW, Davis MA, Burns-Naas LA, Lawton MP, Clark AM, Reynolds JA. Identification and elucidation of the biology of adverse events: the challenges of safety assessment and translational medicine. Clin. Cancer Res. 17(21), 6641–6645 (2011).
  • Buchen L. Missing the mark. Nature 471(7339), 428–432 (2011).
  • Sawyers CL. The cancer biomarker problem. Nature 452(7187), 548–552 (2008).
  • Lin BY, White JT, Lu W et al. Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res. 65(8), 3081–3091 (2005).
  • Morrissey B, O'Shea C, Armstrong J et al. Development of a label-free LC-MS/MS strategy to approach the identification of candidate protein biomarkers of disease recurrence in prostate cancer patients in a clinical trial of combined hormone and radiation therapy. Proteomics. Clin. Appl. 7(5–6), 316–326 (2013).
  • Cho WC. Proteomics and translational medicine: molecular biomarkers for cancer diagnosis, prognosis and prediction of therapy outcome. Expert Rev. Proteomics 8(1), 1–4 (2011).
  • Dunn WB. Mass spectrometry in systems biology an introduction. Methods Enzymol. 500, 15–35 (2011).
  • Ostrowski J, Wyrwicz LS. Integrating genomics, proteomics and bioinformatics in translational studies of molecular medicine. Expert Rev.Mol. Diagn. 9(6), 623–630 (2009).
  • Pavlou M, Diamandis EP. The search for new prostate cancer biomarkers continues. Clin. Chem. 55(7), 1277–1279 (2009).
  • Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol. Cell. Proteomics 3(4), 367–378 (2004).
  • Prakash A, Rezai T, Krastins B et al. Platform for establishing interlaboratory reproducibility of selected reaction monitoring-based mass spectrometry peptide assays. J. Proteome Res. 9(12), 6678–6688 (2010).
  • Borrebaeck CA. Viewpoints in clinical proteomics: when will proteomics deliver clinically useful information? Proteomics Clin. Appl. 6(7–8), 343–345 (2012).
  • Hood L, Tian Q. Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinformatics 10(4), 181–185 (2012).
  • Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Gen. 14(1), 35–48 (2013).
  • Brenner DE, Hawk E. Trials and tribulations of interrogating biomarkers to define efficacy of cancer risk reductive interventions. Cancer Prev. Res. (Phila.) 6(2), 71–73 (2013).
  • Goldknopf IL. Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Rev.Proteomics 5(1), 1–8 (2008).
  • Diamandis EP, Hanash S, Lopez M, Carr S, Petricoin EF 3rd. Protein quantification by mass spectrometry: is it ready for prime time? Clin. Chem. 55(7), 1427–1430 (2009).
  • Mueller MM, Fusenig NE. Friends or foes - Bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4(11), 839–849 (2004).
  • Alderton G. Tumour microenvironment–remodelling resistance. Nat. Rev. Cancer 7(1), 7–7 (2007).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool – opportunities and potential limitations. Mol. Cell Proteomics 3(4), 367–378 (2004).
  • Nilsson T, Mann M, Aebersold R, Yates JR, Bairoch A, Bergeron JJM. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat. Methods 7(9), 681–685 (2010).
  • Wright ME, Han DK, Aebersold R. Mass spectrometry-based expression profiling of clinical prostate cancer. Mol. Cell Proteomics 4(4), 545–554 (2005).
  • Cravatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics. Nature 450(7172), 991–1000 (2007).
  • Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J. Cell .Biol. 190(4), 491–500 (2010).
  • Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Ann. Rev. Biochem. 80, 273–299 (2011).
  • Anderson NL, Anderson NG, Pearson TW et al. A human proteome detection and quantitation project. Mol. Cell Proteomics 8(5), 883–886 (2009).
  • Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature 452(7187), 571–579 (2008).
  • Garbis SD, Tyritzis SI, Roumeliotis T et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 7(8), 3146–3158 (2008).
  • Garbis SD, Roumeliotis TI, Tyritzis SI, Zorpas KM, Pavlakis K, Constantinides CA. A novel multidimensional protein identification technology approach combining, protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS(2) for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia. Anal Chem, 83(3), 708–718 (2011).
  • Gharib SA, Nguyen E, Altemeier WA et al. Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J, 35(6), 1388–1395 (2010).
  • Chiam K, Ryan NK, Ricciardelli C et al. Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers. Prostate 73(2), 182–193 (2013).
  • Hensley PJ, Kyprianou N. Modeling Prostate cancer in mice: limitations and opportunities. J. Androl. 33(2), 133–144 (2012).
  • Ehsan S, Boocock D, Ball G, Herbert KE, Sayers RD, Bown MJ. Application of mass spectrometric (MS) based proteomics coupled with artificial neural networks analysis for biomarker discovery of abdominal aortic aneurysm (AAA). Br. J. Surg. 99, 16–16 (2012).
  • Fung ET, Weinberger SR, Gavin E, Zhang FJ. Bioinformatics approaches in clinical proteomics. Expert Rev. Proteomics 2(6), 847–862 (2005).
  • Matharoo-Ball B, Ball G, Rees R. Clinical proteomics: Discovery of cancer biomarkers using mass spectrometry and bioinformatics approaches – a prostate cancer perspective. Vaccine 25, B110-B121 (2007).
  • Zhang F, Chen JY. A neural network approach to multi-biomarker panel development based on LC/MS/MS proteomics profiles: a case study in breast cancer. Comp. Med. Sys. 449–454 (2009).
  • Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks in bioinformatics-application to complex microarray and mass spectrometry datasets in cancer studies. Brief Bioinform 10(3), 315–329 (2009).
  • Rossier J, Pena C. Extrinsic evolution of fuzzy systems applied to disease diagnosis. Lect. Notes Comput. Sci. 6274, 226–237 (2010).
  • Schneider J. Tumor markers in detection of lung cancer. Adv. Clin. Chem. 42, 1–41 (2006).
  • Hilario M, Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 9(2), 102–118 (2008).
  • Hood BL, Darfler MM, Guiel TG et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol. Cell Proteomics 4(11), 1741–1753 (2005).
  • DeSouza L, Diehl G, Rodrigues MJ et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and clCAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4(2), 377–386 (2005).
  • Everley PA, Krijgsveld J, Zetter BR, Gygi SP. Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 3(7), 729–735 (2004).
  • Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4(4), 1116–1134 (2004).
  • Martin DB, Gifford DR, Wright ME et al. Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res. 64(1), 347–355 (2004).
  • Wright ME, Eng J, Sherman J et al. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome. Biol. 5(1) R4 (2004).
  • Rowland JG, Simon JW, Slabas AR, Robson CN, Leung HY. Quantitative proteomic analysis of androgen & anti-androgen responses in the LNCaP prostate cancer cell line. Br. J. Cancer 91, S38–S38 (2004).
  • Fenselau C, Yao X. Proteolytic labeling with 18O for comparative proteomics studies: preparation of 18O-labeled peptides and the 18O/16O peptide mixture. Methods Mol. Biol. 359, 135–142 (2007).
  • Garbis S, Lubec G, Fountoulakis M. Limitations of current proteomics technologies. J. Chromatogr. A 1077(1), 1–18 (2005).
  • Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev. 107(8), 3568–3584 (2007).
  • Garcia-Ramirez M, Canals F, Hernandez C et al. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia 50(6), 1294–1303 (2007).
  • Wu WW, Wang GH, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res. 5(3), 651–658 (2006).
  • Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional separations-based shotgun proteomics. Chem. Rev. 107(8), 3654–3686 (2007).
  • Goldstraw MA, Fitzpatrick JM, Kirby RS. What is the role of inflammation in the pathogenesis of prostate cancer? BJU Int. 99(5), 966–968 (2007).
  • Nelson WG, DeMarzo AM, DeWeese TL, Isaacs WB. The molecular pathogenesis of human prostate cancer. Hormonal Carcinogenesis Iv 34–44 (2005).
  • Albini A, Ferrari N, Tosetti F et al. Inflammatory angiogenesis as a target for cancer therapy and prevention. Clin. Exp. Metastas 24(4), 230–231 (2007).
  • Albini A, Tosetti F, Benelli R, Noonan DM. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res. 65(23), 10637–10641 (2005).
  • Milad M, Sullivan W, Diehl E et al. Interaction of the progesterone-receptor with binding-proteins for Fk506 and cyclosporine-A. Mol. Endocrinol. 9(7), 838–847 (1995).
  • Miyoshi Y, Ishiguro H, Uemura H et al. Expression of AR associated protein 55 (ARA55) and androgen receptor in prostate cancer. Prostate 56(4), 280–286 (2003).
  • Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 19(6), 1654–1666 (2005).
  • De Leon JT, Iwai A, Feau C et al. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc. Natl Acad. Sci. USA 108(29), 11878–11883 (2011).
  • McKeen HD, Brennan DJ, Hegarty S et al. The emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL. Biochem. Soc. T 39, 663–668 (2011).
  • Hildenbrand ZL, Molugu SK, Herrera N, Ramirez C, Xiao C, Bernal RA. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2(1–2), 43–58 (2011).
  • Yang MH, Sytkowski AJ. Differential expression and androgen regulation of the human selenium-binding protein gene hSP56 in prostate cancer cells. Cancer Res. 58(14), 3150–3153 (1998).
  • Okuda M, Horn HF, Tarapore P et al. Nucleophosmin/B23 is a target of CDK2/Cyclin E in centrosome duplication. Cell 103(1), 127–140 (2000).
  • Krust B, El Khoury D, Nondier I, Soundaramourty C, Hovanessian AG. Targeting surface nucleolin with multivalent HB-19 and related nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type. BMC Cancer 11 (2011).
  • Dabbous MK, Jefferson MM, Haney L, Thomas EL. Biomarkers of metastatic potential in cultured adenocarcinoma clones. Clin. Exp. Metastas. 28(2), 101–111 (2011).
  • Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat. Rev. Cancer 6(7), 493–505 (2006).
  • Sun CY, Song C, Ma ZC et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy. Proteome Sci. 9 (2011).
  • Sun CY, Zhao XJ, Xu K et al. Periostin: a promising target of therapeutical intervention for prostate cancer. J. Transl. Med. 9 (2011).
  • Planche A, Bacac M, Provero P et al. Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS ONE 6(5) (2011).
  • Kim CJ, Sakamoto K, Tambe Y, Inoue H. Opposite regulation of epithelial-to- mesenchymal transition and cell invasiveness by periostin between prostate and bladder cancer cells. Int. J. Oncol. 38(6), 1759–1766 (2011).
  • Weng WH, Ahlen J, Astrom K, Lui WO, Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin. Cancer Res. 11(17), 6198–6204 (2005).
  • Moretti RM, Mai S, Marelli MM, Rizzi F, Bettuzzi S, Limonta P. Molecular mechanisms of the antimetastatic activity of nuclear clusterin in prostate cancer cells. Int. J. Oncol. 39(1), 225–234 (2011).
  • Hale LP, Price DT, Sanchez LM, Demark-Wahnefried W, Madden JF. Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer. Clin. Cancer Res. 7(4), 846–853 (2001).
  • Yu YP, Luo JH. Myopodin-mediated suppression of prostate cancer cell migration involves interaction with zyxin. Cancer Res. 66(15), 7414–7419 (2006).
  • Di Cristofano C, Leopizzi M, Miraglia A et al. Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Modern Pathol. 23(7), 1012–1020 (2010).
  • Khanna C, Wan XL, Bose S et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10(2), 182–186 (2004).
  • Ablin RJ, Kynaston HG, Mason MD, Jiang WG. Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer. J. Transl. Med. 9 (2011).
  • Jiang WG, Ablin RJ. Prostate transglutaminase: a unique transglutaminase and its role in prostate cancer. Biomark. Med. 5(3), 285–291 (2011).
  • Sardana G, Jung K, Stephan C, Diamandis EP. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J. Proteome Res. 7(8), 3329–3338 (2008).
  • Whitmore TE, Peterson A, Holzman T et al. Integrative analysis of N-linked human glycoproteomic data sets reveals PTPRF ectodomain as a novel plasma biomarker candidate for prostate cancer. J. Proteome Res. 11(5), 2653–2665 (2012).
  • Hughes AJ, Lin RK, Peehl DM, Herr AE. Microfluidic integration for automated targeted proteomic assays. Proc. Natl Acad. Sci. USA 109(16), 5972–5977 (2012).
  • Tasch J, Gong M, Sadelain M, Heston WD. A unique folate hydrolase, prostate-specific membrane antigen (PSMA): a target for immunotherapy? Crit. Rev. Immunol. 21(1–3), 249–261 (2001).
  • Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 91(3), 528–539 (2004).
  • Ghosh A, Wang X, Klein E, Heston WD. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 65(3), 727–731 (2005).
  • Yao V, Berkman CE, Choi JK, O'Keefe DS, Bacich DJ. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate 70(3), 305–316 (2010).
  • Morote J, Ropero J, Planas J et al. Metabolic syndrome increases the risk of aggressive prostate cancer detection. BJU Int. 111(7), 1031–1036 (2013).
  • Collier A, Ghosh S, McGlynn B, Hollins G. Prostate cancer, androgen deprivation therapy, obesity, the metabolic syndrome, type 2 diabetes, and cardiovascular disease: a review. Am. J. Clin. Oncol. 35(5), 504–509 (2012).
  • Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diab. Care 35(11), 2402–2411 (2012).
  • Gunter JH, Lubik AA, McKenzie I, Pollak M, Nelson CC. The Interactions between insulin and androgens in progression to castrate-resistant prostate cancer. Adv. Urol. 2012, 248607 (2012).
  • Williams G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-alpha and GPER signalling. Molec. Cell. Endocrinol. 351(2), 269–278 (2012).
  • Mutakin, Meiliana A, Wijaya A et al. Association between selenium nutritional status and metabolic risk factors in men with visceral obesity. J. Trace. Elem. Med. Biol. 27(2), 112–116 (2013).
  • Lee TW, Kwon H, Zong H et al. Fyn deficiency promotes a preferential increase in subcutaneous adipose tissue mass and decreased visceral adipose tissue inflammation. Diabetes 62(5), 1537–1546 (2013).
  • Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim. Biophys.Acta. (2013).
  • Bergmann K, Sypniewska G. Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clin. Chem. Lab. Med. 51(1), 177–185 (2013).
  • Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol. Med. 19(5), 292–301 (2013).
  • Oh EG, Bang SY, Kim SH et al. Therapeutic lifestyle modification program reduces plasma levels of the chemokines CRP and MCP-1 in subjects with metabolic syndrome. Biol. Res. Nur. 15(1), 48–55 (2013).
  • Tsavachidou D, McDonnell TJ, Wen SJ et al. Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J. Natl Cancer I 101(5), 306–320 (2009).
  • Kim J, Sun PY, Lam YW et al. Changes in serum proteomic patterns by presurgical alpha-tocopherol and L-selenomethionine supplementation in prostate cancer. Cancer Epidem. Biomar. 14(7), 1697–1702 (2005).
  • Gonzalez-Moreno O, Boque N, Redrado M et al. Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage. Prostate 71(8), 824–834 (2011).
  • Yang CM, Yen YT, Huang CS, Hu ML. Growth inhibitory efficacy of lycopene and beta-carotene against androgen-independent prostate tumor cells xenografted in nude mice. Mol. Nutr. Food Res. 55(4), 606–612 (2011).
  • Jeronimo C, Henrique R, Oliveira J et al. Aberrant cellular retinol binding protein 1 (CRBP1) gene expression and promoter methylation in prostate cancer. J. Clin. Pathol. 57(8), 872–876 (2004).
  • Toki K, Enokida H, Kawakami K et al. CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer. Int. J. Oncol. 37(6), 1379–1388 (2010).
  • Kuemmerle NB, Rysman E, Lombardo PS et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 10(3), 427–436 (2011).
  • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7(10), 763–777 (2007).
  • Oh KS, Khan SG, Jaspers NGJ et al. Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): xeroderma pigmentosum without and with Cockayne syndrome. Hum. Mutat. 27(11), 1092–1103 (2006).
  • Dong Y, Zhang HT, Hawthorn L, Ganther HE, Ip C. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63(1), 52–59 (2003).
  • Das SK, Eder S, Schauer S et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333(6039), 233–238 (2011).
  • Sytkowski AJ, Gao C, Feldman L, Chen C. Human selenium binding protein-1 (hSP56) inhibits anchorage-independent growth of PC-3 human prostate cancer cells and is down-regulated in primary human prostate tumor. J. Clin. Oncol. 23(16), 852S–852S (2005).
  • Walsh PC. Chemoprevention of prostate cancer. N. Engl. J. Med. 362(13), 1237–1238 (2010).
  • De Nunzio C, Freedland SJ, Miano R et al. Metabolic syndrome is associated with high grade gleason score when prostate cancer is diagnosed on biopsy. Prostate 71(14), 1492–1498 (2011).
  • Zeliadt SB, Ramsey SD. Cost-effectiveness of prostate cancer chemoprevention among high-risk men. Expert Rev. Pharm. Out 10(5), 505–508 (2010).
  • Diamandis EP. Can chemoprevention reduce the risk of prostate cancer? Clin. Chem. 56(8), 1214–1215 (2010).
  • Roumeliotis TI, Halabalaki M, Alexi X et al. Pharmacoproteomic study of the natural product Ebenfuran III in DU-145 prostate cancer cells: The quantitative and temporal interrogation of chemically induced cell death at the protein level. J. Proteome Res. (2013).
  • Mullins C, Lucia MS, Hayward SW et al. A comprehensive approach toward novel serum biomarkers for benign prostatic hyperplasia: the MPSA Consortium. J. Urol. 179(4), 1243–1256 (2008).
  • Diamandis EP. Prostate cancer screening with prostate-specific antigen testing: more answers or more confusion? Clin. Chem. 56(3), 345–351 (2010).
  • Kulasingam V, Smith CR, Batruch I, Buckler A, Jeffery DA, Diamandis EP. ‘Product ion monitoring’ assay for prostate-specific antigen in serum using a linear ion-trap. J. Proteome Res. 7(2), 640–647 (2008).
  • Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7(6), 513–520 (2005).
  • Issaq HJ, Xiao Z, Veenstra TD. Serum and plasma proteomics. Chem. Rev. 107(8), 3601–3620 (2007).
  • Barelli S, Crettaz D, Thadikkaran L, Rubin O, Tissot JD. Plasma/serum proteomics: pre-analytical issues. Expert Rev. Proteomics 4(3), 363–370 (2007).
  • Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin. Chem. 56(2), 177–185 (2010).
  • Farrah T, Deutsch EW, Omenn GS et al. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 10(9), M110 006353 (2011).
  • Yocum AK, Yu K, Oe T, Blair IA. Effect of immunoaffinity depletion of human serum during proteomic investigations. J. Proteome Res. 4(5), 1722–1731 (2005).
  • Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC. Differences among techniques for high-abundant protein depletion. Proteomics 5(13), 3304–3313 (2005).
  • Granger J, Siddiqui J, Copeland S, Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics 5(18), 4713–4718 (2005).
  • Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ. Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics Clin. Appl. 1(1), 73–88 (2007).
  • Zolla L. Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov. Today 13(23–24), 1042–1051 (2008).
  • Patel BB, Barrero CA, Braverman A et al. Assessment of two immunodepletion methods: off-target effects and variations in immunodepletion efficiency may confound plasma proteomics. J. Proteome Res. 11(12), 5947–5958 (2012).
  • Tu C, Rudnick PA, Martinez MY et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res. 9(10), 4982–4991 (2010).
  • Gundry RL, White MY, Nogee J, Tchernyshyov I, Van Eyk JE. Assessment of albumin removal from an immunoaffinity spin column: critical implications for proteomic examination of the albuminome and albumin-depleted samples. Proteomics 9(7), 2021–2028 (2009).
  • Florentinus AK, Bowden P, Sardana G, Diamandis EP, Marshall JG. Identification and quantification of peptides and proteins secreted from prostate epithelial cells by unbiased liquid chromatography tandem mass spectrometry using goodness of fit and analysis of variance. J. Proteomics 75(4), 1303–1317 (2012).
  • Diamandis EP. EPCA-2: a highly specific serum marker for prostate cancer. Clin. Biochem. 45(7–8), 600 (2012).
  • Saraon P, Musrap N, Cretu D et al. Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer. J. Biol. Chem. 287(41), 34019–34031 (2012).
  • Bordeaux J, Welsh A, Agarwal S et al. Antibody validation. Biotechniques 48(3), 197–209 (2010).
  • Stoevesandt O, Taussig MJ. Affinity reagent resources for human proteome detection: initiatives and perspectives. Proteomics 7(16), 2738–2750 (2007).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100(12), 6940–6945 (2003).
  • Jaffe JD, Keshishian H, Chang B, Addona TA, Gillette MA, Carr SA. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol. Cell. Proteomics 7(10), 1952–1962 (2008).
  • Kim Y, Ignatchenko V, Yao CQ et al. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol. Cell. Proteomics 1(12), 1870–1884 (2012).
  • Zhang H, Liu Q, Zimmerman LJ et al. Methods for peptide and protein quantitation by liquid chromatography-multiple reaction monitoring mass spectrometry. Mol. Cell. Proteomics 10(6), M110 006593 (2011).
  • Rissin DM, Kan CW, Campbell TG et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28(6), 595–599 (2010).
  • Rudnick PA, Clauser KR, Kilpatrick LE et al. Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses. Mol. Cell. Proteomics 9(2), 225–241 (2010).
  • Paulovich AG, Billheimer D, Ham AJ et al. Interlaboratory study characterizing a yeast performance standard for benchmarking LC-MS platform performance. Mol. Cell. Proteomics 9(2), 242–254 (2010).
  • Tabb DL, Vega-Montoto L, Rudnick PA et al. Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J. Proteome Res. 9(2), 761–776 (2010).
  • Whiteaker JR, Lin C, Kennedy J et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29(7), 625–634 (2011).
  • Whiteaker JR, Zhao L, Anderson L, Paulovich AG. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol. Cell. Proteomics 9(1), 184–196 (2010).
  • Anderson NL, Jackson A, Smith D, Hardie D, Borchers C, Pearson TW. SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device. Mol. Cell. Proteomics. 8(5), 995–1005 (2009).
  • Razavi M, Frick LE, LaMarr WA et al. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry. J. Proteome Res. 11(12), 5642–5649 (2012).
  • Kuzyk MA, Smith D, Yang J et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol. Cell. Proteomics 8(8), 1860–1877 (2009).
  • Yocum AK, Khan AP, Zhao R, Chinnaiyan AM. Development of selected reaction monitoring-MS methodology to measure peptide biomarkers in prostate cancer. Proteomics 10(19), 3506–3514 (2010).
  • Li Y, Tian Y, Rezai T et al. Simultaneous analysis of glycosylated and sialylated prostate-specific antigen revealing differential distribution of glycosylated prostate-specific antigen isoforms in prostate cancer tissues. Anal. Chem. 83(1), 240–245 (2011).
  • Rezeli M, Vegvari A, Fehniger TE, Laurell T, Marko-Varga G. Moving towards high density clinical signature studies with a human proteome catalogue developing multiplexing mass spectrometry assay panels. J. Clin. Bioinformatics 1(1), 7 (2011).
  • Shi T, Sun X, Gao Y et al. Targeted quantification of low ng/ml level proteins in human serum without immunoaffinity depletion. J. Proteome Res. (2013).
  • Drabovich AP, Jarvi K, Diamandis EP. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol. Cell. Proteomics 10(12), M110 004127 (2011).
  • Martinez-Morillo E, Cho CK, Drabovich AP, Shaw JL, Soosaipillai A, Diamandis EP. Development of a multiplex selected reaction monitoring assay for quantification of biochemical markers of down syndrome in amniotic fluid samples. J. Proteome Res. 11(7), 3880–3887 (2012).
  • Zhao Y, Tian B, Edeh CB, Brasier AR. Quantitation of the dynamic profiles of the innate immune response using multiplex selected reaction monitoring-mass spectrometry. Mol. Cell. Proteomics 12(6), 1513–1529 (2013).
  • Cho CK, Drabovich AP, Batruch I, Diamandis EP. Verification of a biomarker discovery approach for detection of Down syndrome in amniotic fluid via multiplex selected reaction monitoring (SRM) assay. J. Proteomics 74(10), 2052–2059 (2011).
  • Staples E, Ingram RJ, Atherton JC, Robinson K. Optimising the quantification of cytokines present at low concentrations in small human mucosal tissue samples using Luminex assays. J. Immunol. Methods (2013).
  • Munro SB, Kuypers J, Jerome KR. Comparison of a multiplex real-time PCR assay with a multiplex Luminex assay for influenza virus detection. J. Clin. Microbiol. 51(4), 1124–1129 (2013).
  • Schoenherr RM, Whiteaker JR, Zhao L et al. Multiplexed quantification of estrogen receptor and HER2/Neu in tissue and cell lysates by peptide immunoaffinity enrichment mass spectrometry. Proteomics 12(8), 1253–1260 (2012).
  • Hoofnagle AN, Roth MY. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J. Clin. Endocrinol. Metab. 98(4), 1343–1352 (2013).
  • Whiteaker JR, Zhao L, Lin C, Yan P, Wang P, Paulovich AG. Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry. Mol. Cell. Proteomics 11(6), M111 015347 (2012).
  • Kuhn E, Whiteaker JR, Mani DR et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol. Cell. Proteomics 11(6), M111 013854 (2012).
  • Astorga-Wells J, Vollmer S, Bergman T, Jornvall H. Microfluidic systems and proteomics: applications of the electrocapture technology to protein and peptide analysis. Anal. Biochem. 345(1), 10–17 (2005).
  • Koster S, Verpoorte E. A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview. Lab. Chip. 7(11), 1394–1412 (2007).
  • Lion N, Rohner TC, Dayon L et al. Microfluidic systems in proteomics. Electrophoresis 24(21), 3533–3562 (2003).
  • Gottschlich N, Culbertson CT, McKnight TE, Jacobson SC, Ramsey JM. Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides. J. Chromatogr. B Biomed. Sci. Appl. 745(1), 243–249 (2000).
  • Culbertson CT. Single cell analysis on microfluidic devices. Methods Mol. Biol. 339, 203–216 (2006).
  • Culbertson CT, Jacobson SC, Michael Ramsey J. Diffusion coefficient measurements in microfluidic devices. Talanta 56(2), 365–373 (2002).
  • Culbertson CT, Tugnawat Y, Meyer AR, Roman GT, Ramsey JM, Gonda SR. Microchip separations in reduced-gravity and hypergravity environments. Anal. Chem. 77(24), 7933–7940 (2005).
  • Rafalko A, Dai S, Hancock WS, Karger BL, Hincapie M. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J. Proteome Res. 11(2), 808–817 (2012).
  • Tsougeni K, Zerefos P, Tserepi A, Vlahou A, Garbis SD, Gogolides E. TiO(2)-ZrO(2) affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. Lab. Chip. 11(18), 3113–3120 (2011).
  • Kim W, Guo M, Yang P, Wang D. Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry. Anal. Chem. 79(10), 3703–3707 (2007).
  • Tsiknakis M, Grangeat P, Binz PA et al. Functional specifications of an integrated proteomics information management and analysis platform. Conf. Proc. 2007, 6065–6069 (2007).
  • Sedgwick H, Caron F, Monaghan PB, Kolch W, Cooper JM. Lab-on-a-chip technologies for proteomic analysis from isolated cells. J. R. Soc. Interface 5(Suppl. 2), S123–130 (2008).
  • Tsaloglou MN, Laouenan F, Loukas CM et al. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform. Analyst 138(2), 593–602 (2013).
  • Mouradian S. Lab-on-a-chip: applications in proteomics. Curr. Opin. Chem. Biol. 6(1), 51–56 (2002).
  • Schasfoort RB. Proteomics-on-a-chip: the challenge to couple lab-on-a-chip unit operations. Expert Rev. proteomics 1(1), 123–132 (2004).
  • Chun H, Chung TD, Ramsey JM. High yield sample preconcentration using a highly ion-conductive charge-selective polymer. Anal. Chem. 82(14), 6287–6292 (2010).
  • Xia H, Murray K, Soper S, Feng J. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment. Biomed. Microdevices 14(1), 67–81 (2012).
  • Takulapalli BR, Qiu J, Magee DM et al. High density diffusion-free nanowell arrays. J. Proteome Res. 11(8), 4382–4391 (2012).
  • Yun H, Kim K, Lee WG. Cell manipulation in microfluidics. Biofabrication 5(2), 022001 (2013).

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.