345
Views
9
CrossRef citations to date
0
Altmetric
Review

Oncometabolomics in cancer research

&
Pages 325-336 | Published online: 09 Jan 2014

References

  • Kim YS, Maruvada P, Milner JA. Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol. 4(1), 93–102 (2008).
  • Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin. Cancer Res. 15(2), 431–440 (2009).
  • O'Connell TM. Recent advances in metabolomics in oncology. Bioanalysis 4(4), 431–451 (2012).
  • Nicholson JK, Lindon JC. Metabonomics. Nature 45(23), 1054–1056 (2008).
  • Nordstrom A, Lewensohn R. Metabolomics: moving to the clinic. J. Neuroimmune Pharmacol. 5(1), 4–17 (2010).
  • Davis VW, Bathe OF, Schiller DE, Slupsky CM, Sawyer MB. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J. Surg. Oncol. 103(5), 451–459 (2011).
  • Ma Y, Zhang P, Yang Y, Wang F, Qin H. Metabolomics in the fields of oncology: a review of recent research. Mol. Biol. Rep. 39(7), 7505–7511 (2012).
  • Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012).
  • Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH. Metabolomics in cancer: a bench-to-bedside intersection. Crit. Rev. Oncol. Hematol. 84(1), 1–7 (2012).
  • Fiehn O. Combining genomics, metabolome analysis and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics. 2, 155–168 (2001).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100, 57–70 (2000).
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009).
  • Serkova NJ, Glunde K. Metabolomics of Cancer. In: Methods in Molecular Biology, Tumor Biomarker Discovery. Tainsky MA (Ed.). Humana Press, NY, USA, 273–295 (2009).
  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5(9), 763–769 (2004).
  • Beckonert O, Coen M, Keun HC et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 5(6), 1019–1032 (2010).
  • Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227(8), 2975–2981 (2012).
  • Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. LC-MS-based metabolomics in the clinical laboratory. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 883–884, 68–75 (2012).
  • Fan TW, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 133(3), 366–391 (2012).
  • Vaughan AA, Dunn WB, Allwood JW et al. Liquid chromatography-mass spectrometry calibration transfer and metabolomics data fusion. Anal. Chem. 84(22), 9848–9857 (2012).
  • Kamleh MA, Ebbels TM, Spagou K, Masson P, Want EJ. Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Anal. Chem. 84(6), 2670–2677 (2012).
  • Benton HP, Want E, Keun HC et al. Intra- and interlaboratory reproducibility of ultra performance liquid chromatography-time-of-flight mass spectrometry for urinary metabolic profiling. Anal. Chem. 84(5), 2424–2432 (2012).
  • Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS ONE 6(10), e25357 (2011).
  • Want EJ, Masson P, Michopoulos F et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8(1), 17–32 (2013).
  • Serkova NJ, Brown MS. Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 4(3), 321–341 (2012).
  • Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 70(17), 6692–6696 (2010).
  • Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev. Mol. Diagn. 6(5), 717–731 (2006).
  • Wong A, Jimenez B, Li X et al. Evaluation of high resolution magic-angle coil spinning NMR spectroscopy for metabolic profiling of nanoliter tissue biopsies. Anal. Chem. 84(8), 3843–3848 (2012).
  • Glunde K, Jiang L, Moestue SA, Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 24(6), 673–690 (2011).
  • Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell. Metab. 16(5), 565–577 (2012).
  • Chaudhri VK, Salzler GG, Dick SA et al. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res. 11(6), 579–592 (2013).
  • Teicher BA, Linehan WM, Helman LJ. Targeting cancer metabolism. Clin. Cancer Res. 18(20), 5537–5545 (2012).
  • Zhao Y, Liu H, Riker AI et al. Emerging metabolic targets in cancer therapy. Front. Biosci. 16, 1844–1860 (2011).
  • Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532 (2013).
  • Davis VW, Schiller DE, Eurich D, Bathe OF, Sawyer MB. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann. Surg. Oncol. (2012).
  • Huang J, Sun J, Chen Y et al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: a case study for breast cancer. Anal. Chim. Acta 711, 60–68 (2012).
  • Chinnaiyan P, Kensicki E, Bloom G et al. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 72(22), 5878–5888 (2012).
  • Reitman ZJ, Jin G, Karoly ED et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl Acad. Sci. USA. 108(8), 3270–3275 (2011).
  • Budhu A, Roessler S, Zhao X et al. Integrated Metabolite and Gene Expression Profiles Identify Lipid Biomarkers Associated With Progression of Hepatocellular Carcinoma and patient outcomes. Gastroenterology 144(5), 1066–1075 (2013).
  • Ressom HW, Xiao JF, Tuli L et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim. Acta 743, 90–100 (2012).
  • Zhang A, Sun H, Yan G, Han Y, Ye Y, Wang X. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry. Clin. Chim. Acta 418, 86–90 (2013).
  • Zhang J, Bowers J, Liu L et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS ONE 7(1), e30181 (2012).
  • Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231), 910–914 (2009).
  • Jentzmik F, Stephan C, Lein M et al. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 185(2), 706–711 (2011).
  • Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun. Mass Spectrom. 24(5), 613–620 (2010).
  • Bathe OF, Shaykhutdinov R, Kopciuk K et al. Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomarkers Prev. 20(1), 140–147 (2011).
  • OuYang D, Xu J, Huang H, Chen Z. Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl. Biochem. Biotechnol. 165(1), 148–154 (2011).
  • Napoli C, Sperandio N, Lawlor RT, Scarpa A, Molinari H, Assfalg M. Urine metabolic signature of pancreatic ductal adenocarcinoma by (1)h nuclear magnetic resonance: identification, mapping, and evolution. J. Proteome Res. 11(2), 1274–1283 (2012).
  • Zhang L, Jin H, Guo X et al. Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by (1)H nuclear magnetic resonance-based metabonomic profiles. Clin. Biochem. 45(13–14), 1064–1069 (2012).
  • Cheng Y, Xie G, Chen T et al. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 11(2), 1354–1363 (2012).
  • Chen JL, Fan J, Yan LS et al. Urine metabolite profiling of human colorectal cancer by capillary electrophoresis mass spectrometry based on MRB. Gastroenterol. Res. Pract. 2012, 8 (2012).
  • Hasim A, Ma H, Mamtimin B et al. Revealing the metabonomic variation of EC using (1)H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol. Biol. Rep. 39(9), 8955–8964 (2012).
  • Davis VW, Schiller DE, Eurich D, Sawyer MB. Urinary metabolomic signature of esophageal cancer and Barrett's esophagus. World J. Surg. Oncol. 10, 271 (2012).
  • Zhou M, Guan W, Walker LD et al. Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol. Biomarkers Prev. 19(9), 2262–2271 (2010).
  • Silva EG, Lopez PR, Atkinson EN, Fente CA. A new approach for identifying patients with ovarian epithelial neoplasms based on high-resolution mass spectrometry. Am. J. Clin. Pathol. 134(6), 903–909 (2010).
  • Huang Z, Lin L, Gao Y et al. Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol. Cell Proteomics. 10(10), M111.007922 (2011).
  • Selnaes KM, Gribbestad IS, Bertilsson H et al. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer - investigation of a correlation with Gleason score. NMR Biomed. 26(5), 600–606 (2012).
  • Asiago VM, Alvarado LZ, Shanaiah N et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 70(21), 8309–8318 (2010).
  • Keun HC, Sidhu J, Pchejetski D et al. Serum molecular signatures of weight change during early breast cancer chemotherapy. Clin. Cancer Res. 15(21), 6716–6723 (2009).
  • Cho SH, Choi MH, Lee WY, Chung BC. Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin. Biochem. 42(6), 540–543 (2009).
  • Cao MD, Sitter B, Bathen TF et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 25(2), 369–378 (2012).
  • Wei S, Liu L, Zhang J et al. Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol. Oncol. 7(3), 297–307 (2012).
  • Astrakas L, Blekas KD, Constantinou C et al. Combining magnetic resonance spectroscopy and molecular genomics offers better accuracy in brain tumor typing and prediction of survival than either methodology alone. Int. J. Oncol. 38(4), 1113–1127 (2011).
  • Weaver Z, Difilippantonio S, Carretero J et al. Temporal molecular and biological assessment of an erlotinib-resistant lung adenocarcinoma model reveals markers of tumor progression and treatment response. Cancer Res. 72(22), 5921–5933 (2012).
  • Ohmine K, Kawaguchi K, Ohtsuki S et al. Attenuation of phosphorylation by deoxycytidine kinase is key to acquired gemcitabine resistance in a pancreatic cancer cell line: targeted proteomic and metabolomic analyses in PK9 cells. Pharm. Res. 29(7), 2006–2016 (2012).
  • Tripathi P, Kamarajan P, Somashekar BS et al. Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic target. Int. J. Biochem. Cell Biol. 44(11), 1852–1861 (2012).
  • Cheng HH, Kuo CC, Yan JL et al. Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc. Natl Acad. Sci. U. S. A. 109(33), 13231–13236 (2012).
  • Jain M, Nilsson R, Sharma S et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084), 1040–1044 (2012).
  • Tiziani S, Kang Y, Choi JS, Roberts W, Paternostro G. Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat. Commun. 2, 545 (2011).
  • Griffin JL, Kauppinen RA. Tumour metabolomics in animal models of human cancer. J. Proteome Res. 6(2), 498–505 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.