613
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Using proteomics to identify the HBx interactome in hepatitis B virus: how can this inform the clinic?

, , , &

References

  • Ganem D, Prince AM. Hepatitis B virus infection--natural history and clinical consequences. N. Engl. J. Med. 350(11), 1118–1129 (2004).
  • Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127(5 Suppl. 1), S56–S61 (2004).
  • Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin. Liver Dis. 19(3), 271–285 (1999).
  • Harkisoen S, Arends JE, van Erpecum KJ, van den Hoek A, Hoepelman AI. Hepatitis B viral load and risk of HBV-related liver disease: from East to West? Ann. Hepatol. 11(2), 164–171 (2012).
  • Seeger C, Mason WS. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 64(1), 51–68 (2000).
  • Ganem D, Varmus HE. The molecular biology of the hepatitis B viruses. Annu. Rev. Biochem. 56, 651–693 (1987).
  • Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 281(5733), 646–650 (1979).
  • Twu JS, Schloemer RH. Transcriptional trans-activating function of hepatitis B virus. J. Virol. 61(11), 3448–3453 (1987).
  • Wollersheim M, Debelka U, Hofschneider PH. A transactivating function encoded in the hepatitis B virus X gene is conserved in the integrated state. Oncogene 3(5), 545–552 (1988).
  • Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J. Hepatol. 48(2), 335–352 (2008).
  • Doria M, Klein N, Lucito R, Schneider RJ. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 14(19), 4747–4757 (1995).
  • Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J. Virol. 78(23), 12725–12734 (2004).
  • Zheng DL, Zhang L, Cheng N et al. Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J. Hepatol. 50(2), 377–387 (2009).
  • Benhenda S, Ducroux A, Riviere L et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J. Virol. 87(8), 4360–4371 (2013).
  • Belloni L, Pollicino T, De Nicola F et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA 106(47), 19975–19979 (2009).
  • Rahmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 74(6), 2840–2846 (2000).
  • Elmore LW, Hancock AR, Chang SF et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc. Natl Acad. Sci. USA 94(26), 14707–14712 (1997).
  • Avila MA, Lu KP. Hepatitis B virus x protein and pin1 in liver cancer: “les liaisons dangereuses”. Gastroenterology 132(3), 1180–1183 (2007).
  • Xie N, Huang K, Zhang T et al. Comprehensive proteomic analysis of host cell lipid rafts modified by HBV infection. J. Proteomics. 75(3), 725–739 (2012).
  • Tong A, Wu L, Lin Q et al. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 8(10), 2012–2023 (2008).
  • Dengjel J, Kratchmarova I, Blagoev B. Mapping protein-protein interactions by quantitative proteomics. Methods Mol. Biol. 658, 267–278 (2010).
  • Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J. Viral. Hepat. 9(5), 323–331 (2002).
  • Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 294(5550), 2376–2378 (2001).
  • Keasler VV, Hodgson AJ, Madden CR, Slagle BL. Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J. Virol. 81(6), 2656–2662 (2007).
  • Choi BH, Park GT, Rho HM. Interaction of hepatitis B viral X protein and CCAAT/ enhancer-binding protein alpha synergistically activates the hepatitis B viral enhancer II/pregenomic promoter. J. Biol. Chem. 274(5), 2858–2865 (1999).
  • Cougot D, Allemand E, Riviere L et al. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci. Signal. 5(205), ra1 (2012).
  • Kumar M, Jung SY, Hodgson AJ, Madden CR, Qin J, Slagle BL. Hepatitis B virus regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation of beta interferon. J. Virol. 85(2), 987–995 (2011).
  • Shukla R, Yue J, Siouda M et al. Proinflammatory cytokine TNF-alpha increases the stability of hepatitis B virus X protein through NF-kappaB signaling. Carcinogenesis 32(7), 978–985 (2011).
  • Sir D, Tian Y, Chen WL, Ann DK, Yen TS, Ou JH. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc. Natl Acad. Sci. USA 107(9), 4383–4388 (2010).
  • Qadri I, Maguire HF, Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl Acad. Sci. USA 92(4), 1003–1007 (1995).
  • Cheong JH, Yi M, Lin Y, Murakami S. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J. 14(1), 143–150 (1995).
  • Lin Y, Nomura T, Cheong J, Dorjsuren D, Iida K, Murakami S. Hepatitis B virus X protein is a transcriptional modulator that communicates with transcription factor IIB and the RNA polymerase II subunit 5. J. Biol. Chem. 272(11), 7132–7139 (1997).
  • Qadri I, Conaway JW, Conaway RC, Schaack J, Siddiqui A. Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc. Natl Acad. Sci. USA 93(20), 10578–10583 (1996).
  • Jaitovich-Groisman I, Benlimame N, Slagle BL et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J. Biol. Chem. 276(17), 14124–14132 (2001).
  • Cougot D, Wu Y, Cairo S et al. The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J. Biol. Chem. 282(7), 4277–4287 (2007).
  • Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer 13(2), 123–135 (2013).
  • Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem. J. 416(2), 219–230 (2008).
  • Kong HJ, Hong SH, Lee MY, Kim HD, Lee JW, Cheong J. Direct binding of hepatitis B virus X protein and retinoid X receptor contributes to phosphoenolpyruvate carboxykinase gene transactivation. FEBS Lett. 483(2–3), 114–118 (2000).
  • Tanaka Y, Kanai F, Ichimura T et al. The hepatitis B virus X protein enhances AP-1 activation through interaction with Jab1. Oncogene 25(4), 633–642 (2006).
  • Moon EJ, Jeong CH, Jeong JW et al. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. FASEB J. 18(2), 382–384 (2004).
  • Sung WK, Lu Y, Lee CW, Zhang D, Ronaghi M, Lee CG. Deregulated direct targets of the hepatitis B virus (HBV) protein, HBx, identified through chromatin immunoprecipitation and expression microarray profiling. J. Biol. Chem. 284(33), 21941–21954 (2009).
  • Russell WE, Coffey RJ Jr, Ouellette AJ, Moses HL. Type beta transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc. Natl Acad. Sci. USA 85(14), 5126–5130 (1988).
  • Bertran E, Crosas-Molist E, Sancho P et al. Overactivation of the TGF-beta pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology doi:10.1002/hep.26597 (2013) (Epub ahead of print).
  • Yoo YD, Ueda H, Park K et al. Regulation of transforming growth factor-beta 1 expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J. Clin. Invest. 97(2), 388–395 (1996).
  • Lee DK, Park SH, Yi Y et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 15(4), 455–466 (2001).
  • Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J. Biol. Chem. 273(39), 25510–25515 (1998).
  • Cong YS, Yao YL, Yang WM, Kuzhandaivelu N, Seto E. The hepatitis B virus X-associated protein, XAP3, is a protein kinase C-binding protein. J. Biol. Chem. 272(26), 16482–16489 (1997).
  • Kim JS, Rho B, Lee TH, Lee JM, Kim SJ, Park JH. The interaction of hepatitis B virus X protein and protein phosphatase type 2 Calpha and its effect on IL-6. Biochem. Biophys. Res. Commun. 351(1), 253–258 (2006).
  • Khattar E, Mukherji A, Kumar V. Akt augments the oncogenic potential of the HBx protein of hepatitis B virus by phosphorylation. FEBS J. 279(7), 1220–1230 (2012).
  • Zhang T, Xie N, He W et al. An integrated proteomics and bioinformatics analyses of hepatitis B virus X interacting proteins and identification of a novel interactor apoA-I. J. Proteomics. 84, 92–105 (2013).
  • Banks L, Pim D, Thomas M. Viruses and the 26S proteasome: hacking into destruction. Trends Biochem. Sci. 28(8), 452–459 (2003).
  • Shackelford J, Pagano JS. Tumor viruses and cell signaling pathways: deubiquitination versus ubiquitination. Mol. Cell Biol. 24(12), 5089–5093 (2004).
  • Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5(9), 739–751 (2004).
  • Kalra N, Kumar V. The X protein of hepatitis B virus binds to the F box protein Skp2 and inhibits the ubiquitination and proteasomal degradation of c-Myc. FEBS Lett. 580(2), 431–436 (2006).
  • Huang J, Kwong J, Sun EC, Liang TJ. Proteasome complex as a potential cellular target of hepatitis B virus X protein. J. Virol. 70(8), 5582–5591 (1996).
  • Hu Z, Zhang Z, Doo E, Coux O, Goldberg AL, Liang TJ. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J. Virol. 73(9), 7231–7240 (1999).
  • Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17(1), 105–111 (2010).
  • Jung JK, Kwun HJ, Lee JO, Arora P, Jang KL. Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of beta-catenin depending on the status of cellular p53. J. Gen. Virol. 88(Pt 8), 2144–2154 (2007).
  • Cui F, Wang Y, Wang J et al. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 6(2), 498–504 (2006).
  • Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER. Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46(1), 103–111 (1997).
  • Zhao J, Wang C, Wang J et al. E3 ubiquitin ligase Siah-1 facilitates poly-ubiquitylation and proteasomal degradation of the hepatitis B viral X protein. FEBS Lett. 585(19), 2943–2950 (2011).
  • Li Y, Lau YF. TSPY and its X-encoded homologue interact with cyclin B but exert contrasting functions on cyclin-dependent kinase 1 activities. Oncogene 27(47), 6141–6150 (2008).
  • Tu Y, Wu W, Wu T et al. Antiproliferative autoantigen CDA1 transcriptionally up-regulates p21(Waf1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J. Biol. Chem. 282(16), 11722–11731 (2007).
  • Kido T, Ou JH, Lau YF. The X-linked tumor suppressor TSPX interacts and promotes degradation of the hepatitis B viral protein HBx via the proteasome pathway. PLoS ONE 6(7), e22979 (2011).
  • Xian L, Zhao J, Wang J et al. p53 Promotes proteasome-dependent degradation of oncogenic protein HBx by transcription of MDM2. Mol. Biol. Rep. 37(6), 2935–2940 (2010).
  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1), 49–59 (1990).
  • Ling MT, Chiu YT, Lee TK et al. Id-1 induces proteasome-dependent degradation of the HBX protein. J. Mol. Biol. 382(1), 34–43 (2008).
  • Kim HY, Cho HK, Yoo SK, Cheong JH. Hepatic STAMP2 decreases hepatitis B virus X protein-associated metabolic deregulation. Exp. Mol. Med. 44(10), 622–632 (2012).
  • Truant R, Antunovic J, Greenblatt J, Prives C, Cromlish JA. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J. Virol. 69(3), 1851–1859 (1995).
  • Feitelson MA, Zhu M, Duan LX, London WT. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8(5), 1109–1117 (1993).
  • Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl Acad. Sci USA 91(6), 2230–2234 (1994).
  • Marusawa H, Matsuzawa S, Welsh K et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J. 22(11), 2729–2740 (2003).
  • Liu H, Yuan Y, Guo H et al. Hepatitis B virus encoded X protein suppresses apoptosis by inhibition of the caspase-independent pathway. J. Proteome Res. 11(10), 4803–4813 (2012).
  • Chirillo P, Pagano S, Natoli G et al. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc. Natl Acad. Sci. USA 94(15), 8162–8167 (1997).
  • Terradillos O, Pollicino T, Lecoeur H et al. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 17(16), 2115–2123 (1998).
  • Kim H, Lee H, Yun Y. X-gene product of hepatitis B virus induces apoptosis in liver cells. J. Biol. Chem. 273(1), 381–385 (1998).
  • Shintani Y, Yotsuyanagi H, Moriya K et al. Induction of apoptosis after switch-on of the hepatitis B virus X gene mediated by the Cre/loxP recombination system. J. Gen. Virol. 80(Pt 12), 3257–3265 (1999).
  • Schuster R, Gerlich WH, Schaefer S. Induction of apoptosis by the transactivating domains of the hepatitis B virus X gene leads to suppression of oncogenic transformation of primary rat embryo fibroblasts. Oncogene 19(9), 1173–1180 (2000).
  • Geng X, Harry BL, Zhou Q et al. Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 109(45), 18465–18470 (2012).
  • Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 92(3), 351–366 (1998).
  • Tanaka Y, Kanai F, Kawakami T et al. Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem. Biophys. Res. Commun. 318(2), 461–469 (2004).
  • Rahmani Z, Maunoury C, Siddiqui A. Isolation of a novel human voltage-dependent anion channel gene. Eur. J. Hum. Genet. 6(4), 337–340 (1998).
  • Sorgato MC, Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit. Rev. Biochem. Mol. Biol. 28(2), 127–171 (1993).
  • Colombini M. A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279(5714), 643–645 (1979).
  • Liu MY, Colombini M. Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochim. Biophys. Acta 1098(2), 255–260 (1992).
  • Rostovtseva T, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J. Biol. Chem. 271(45), 28006–28008 (1996).
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 281(5381), 1309–1312 (1998).
  • Marzo I, Brenner C, Zamzami N et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med. 187(8), 1261–1271 (1998).
  • Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J. 22(9), 2104–2116 (2003).
  • Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J. Biol. Chem. 272(28), 17255–17257 (1997).
  • Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication. J. Virol. 72(3), 1737–1743 (1998).
  • Fujii R, Zhu C, Wen Y et al. HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res. 66(18), 9099–9107 (2006).
  • Wen Y, Golubkov VS, Strongin AY, Jiang W, Reed JC. Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. J. Biol. Chem. 283(5), 2793–2803 (2008).
  • Kim S, Park SY, Yong H et al. HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint. Oncogene 27(24), 3457–3464 (2008).
  • Mukherji A, Janbandhu VC, Kumar V. HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. Biochem. J. 401(1), 247–256 (2007).
  • Chu G, Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242(4878), 564–567 (1988).
  • Nichols AF, Itoh T, Graham JA, Liu W, Yamaizumi M, Linn S. Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J. Biol. Chem. 275(28), 21422–21428 (2000).
  • Shiyanov P, Hayes SA, Donepudi M et al. The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol. Cell Biol. 19(7), 4935–4943 (1999).
  • Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443(7111), 590–593 (2006).
  • He YJ, McCall CM, Hu J, Zeng Y, Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20(21), 2949–2954 (2006).
  • Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8(11), 1277–1283 (2006).
  • Becker SA, Lee TH, Butel JS, Slagle BL. Hepatitis B virus X protein interferes with cellular DNA repair. J. Virol. 72(1), 266–272 (1998).
  • Leupin O, Bontron S, Strubin M. Hepatitis B virus X protein and simian virus 5 V protein exhibit similar UV-DDB1 binding properties to mediate distinct activities. J. Virol. 77(11), 6274–6283 (2003).
  • Lok AS. Prevention of hepatitis B virus-related hepatocellular carcinoma. Gastroenterology 127(5 Suppl. 1), S303–S309 (2004).
  • Thomas HC. Hepatitis B viral infection. Am. J. Med. 85(2A), 135–140 (1988).
  • Liu B, Wen X, Huang C, Wei Y. Unraveling the complexity of hepatitis B virus: From molecular understanding to therapeutic strategy in 50 years. Int. J. Biochem. Cell Biol. 45(9), 1987–1996 (2013).
  • Hongthanakorn C, Chotiyaputta W, Oberhelman K et al. Virological breakthrough and resistance in patients with chronic hepatitis B receiving nucleos(t)ide analogues in clinical practice. Hepatology 53(6), 1854–1863 (2011).
  • Lucifora J, Arzberger S, Durantel D et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 55(5), 996–1003 (2011).
  • Belloni L, Allweiss L, Guerrieri F et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J. Clin. Invest. 122(2), 529–537 (2012).
  • Shin D, Kim SI, Kim M, Park M. Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice. Virus Res. 119(2), 146–153 (2006).
  • Bedossa P, Peltier E, Terris B, Franco D, Poynard T. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21(3), 760–766 (1995).
  • Martin-Vilchez S, Sanz-Cameno P, Rodriguez-Munoz Y et al. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology 47(6), 1872–1883 (2008).
  • Yue X, Yang F, Yang Y et al. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol. J. 8, 118 (2011).
  • Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182 (2000).
  • Levrero M, Jean-Jean O, Balsano C, Will H, Perricaudet M. Hepatitis B virus (HBV) X gene expression in human cells and anti-HBx antibodies detection in chronic HBV infection. Virology 174(1), 299–304 (1990).
  • Levrero M, Stemler M, Pasquinelli C et al. Significance of anti-HBx antibodies in hepatitis B virus infection. Hepatology 13(1), 143–149 (1991).
  • Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin. Liver Dis. 25(2), 212–225 (2005).
  • Nguyen VT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J. Viral Hepat. 16(7), 453–463 (2009).
  • Sherman M. Risk of hepatocellular carcinoma in hepatitis B and prevention through treatment. Cleve Clin. J. Med. 76(Suppl. 3), S6–S9 (2009).
  • Nakakura EK, Choti MA. Management of hepatocellular carcinoma. Oncology (Williston Park) 14(7), 1085–1098, discussion 1098–1102 (2000).
  • El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134(6), 1752–1763 (2008).
  • Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008).
  • Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J. Hepatol. 53(2), 348–356 (2010).
  • Bergametti F, Bianchi J, Transy C. Interaction of hepatitis B virus X protein with damaged DNA-binding protein p127: structural analysis and identification of antagonists. J. Biomed. Sci. 9(6 Pt 2), 706–715 (2002).
  • Urban S, Hildt E, Eckerskorn C, Sirma H, Kekule A, Hofschneider PH. Isolation and molecular characterization of hepatitis B virus X-protein from a baculovirus expression system. Hepatology 26(4), 1045–1053 (1997).
  • Liu D, Zou L, Li W, Wang L, Wu Y. High-level expression and large-scale preparation of soluble HBx antigen from Escherichia coli. Biotechnol. Appl. Biochem. 54(Pt 3), 141–147 (2009).
  • Lemmens I, Lievens S, Tavernier J. MAPPIT: a versatile tool to study cytokine receptor signalling. Biochem. Soc. Trans. 36(Pt 6), 1448–1451 (2008).
  • Yoo YG, Cho S, Park S, Lee MO. The carboxy-terminus of the hepatitis B virus X protein is necessary and sufficient for the activation of hypoxia-inducible factor-1alpha. FEBS Lett. 577(1–2), 121–126 (2004).
  • Weil R, Sirma H, Giannini C et al. Direct association and nuclear import of the hepatitis B virus X protein with the NF-kappaB inhibitor IkappaBalpha. Mol. Cell Biol. 19(9), 6345–6354 (1999).
  • You X, Liu F, Zhang T et al. Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells. Oncogene (2013).
  • Choi M, Lee H, Rho HM. E2F1 activates the human p53 promoter and overcomes the repressive effect of hepatitis B viral X protein (Hbx) on the p53 promoter. IUBMB Life 53(6), 309–317 (2002).
  • Wei C, Ni C, Song T et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J. Immunol. 185(2), 1158–1168 (2010).
  • Dorjsuren D, Lin Y, Wei W et al. RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol. Cell Biol. 18(12), 7546–7555 (1998).
  • Wang X, Zhou Y, Sun L et al. Complex formation between heat shock protein 72 and hepatitis B virus X protein in hepatocellular carcinoma tissues. J. Proteome Res. 7(12), 5133–5137 (2008).
  • Pang R, Lee TK, Poon RT et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132(3), 1088–1103 (2007).
  • Zhang SM, Sun DC, Lou S et al. HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch. Virol. 150(8), 1579–1590 (2005).
  • Wei W, Gu JX, Zhu CQ et al. Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res. 13(2), 111–120 (2003).
  • Lin-Marq N, Bontron S, Leupin O, Strubin M. Hepatitis B virus X protein interferes with cell viability through interaction with the p127-kDa UV-damaged DNA-binding protein. Virology 287(2), 266–274 (2001).
  • Rui E, Moura PR, Goncalves KA, Rooney RJ, Kobarg J. Interaction of the hepatitis B virus protein HBx with the human transcription regulatory protein p120E4F in vitro. Virus Res. 115(1), 31–42 (2006).
  • Lwa SH, Chen WN. Hepatitis B virus X protein interacts with beta5 subunit of heterotrimeric guanine nucleotide binding protein. Virol. J. 2, 76 (2005).
  • Shamay M, Barak O, Doitsh G, Ben-Dor I, Shaul Y. Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J. Biol. Chem. 277(12), 9982–9988 (2002).
  • Maguire HF, Hoeffler JP, Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 252(5007), 842–844 (1991).
  • Antunovic J, Lemieux N, Cromlish JA. The 17 kDa HBx protein encoded by hepatitis B virus interacts with the activation domains of Oct-1, and functions as a coactivator in the activation and repression of a human U6 promoter. Cell. Mol. Biol. Res. 39(5), 463–482 (1993).
  • Tan TL, Feng Z, Lu YW, Chan V, Chen WN. Adhesion contact kinetics of HepG2 cells during Hepatitis B virus replication: involvement of SH3-binding motif in HBX. Biochim. Biophys. Acta 1762(8), 755–766 (2006).
  • Parrish JR, Gulyas KD, Finley RL, Jr. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17(4), 387–393 (2006).
  • Sambrook J, Russell DW. Detection of protein-protein interactions using the GST fusion protein pulldown technique. CSH Protoc. 2006(1) (2006).
  • Gregan J, Riedel CG, Petronczki M et al. Tandem affinity purification of functional TAP-tagged proteins from human cells. Nat. Protoc. 2(5), 1145–1151 (2007).
  • Puig O, Caspary F, Rigaut G et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3), 218–229 (2001).
  • Bailey D, Urena L, Thorne L, Goodfellow I. Identification of protein interacting partners using tandem affinity purification. J. Vis. Exp. (60) (2012).
  • Lievens S, Vanderroost N, Van der Heyden J, Gesellchen V, Vidal M, Tavernier J. Array MAPPIT: high-throughput interactome analysis in mammalian cells. J. Proteome Res. 8(2), 877–886 (2009).
  • Eyckerman S, Verhee A, der Heyden JV et al. Design and application of a cytokine-receptor-based interaction trap. Nat. Cell Biol. 3(12), 1114–1119 (2001).
  • Uyttendaele I, Lemmens I, Verhee A et al. Mammalian protein-protein interaction trap (MAPPIT) analysis of STAT5, CIS, and SOCS2 interactions with the growth hormone receptor. Mol. Endocrinol. 21(11), 2821–2831 (2007).
  • Eyckerman S, Lemmens I, Catteeuw D et al. Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat. Methods 2(6), 427–433 (2005).
  • Barrios-Rodiles M, Brown KR, Ozdamar B et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715), 1621–1625 (2005).
  • Hashimoto J, Watanabe T, Seki T et al. Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format. J. Biomol. Screen. 14(8), 970–979 (2009).
  • Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. Methods Mol. Biol. 756, 395–425 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.