356
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Proteomics for the discovery of biomarkers and diagnosis of periodontitis: a critical review

, , &

References

  • Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontology 2000 38(1), 135–187 (2005).
  • Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J. Clin. Microbiol. 44(10), 3665–3673 (2006).
  • Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontology 2000 14(1), 9–11 (1997).
  • Loesche WJ, Grossman NS. Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment. Clin. Microbiol. Rev. 14(4), 727–752 (2001).
  • Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J. Periodontol. 79(8S), 1560–1568 (2008).
  • Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4(1), 1–6 (1999).
  • Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontology 2000 34(1), 9–21 (2004).
  • Armitage GC. Comparison of the microbiological features of chronic and aggressive periodontitis. Periodontology 2000 53(1), 70–88 (2010).
  • Smith M, Seymour GJ, Cullinan MP. Histopathological features of chronic and aggressive periodontitis. Periodontology 2000 53(1), 45–54 (2010).
  • Zhang L, Henson BS, Camargo PM, Wong DT. The clinical value of salivary biomarkers for periodontal disease. Periodontology 2000 51(1), 25–37 (2009).
  • Loos BG, Tjoa S. Host-derived diagnostic markers for periodontitis: do they exist in gingival crevice fluid? Periodontology 2000 39(1), 53–72 (2005).
  • Sorsa T, Tervahartiala T, Leppilahti J et al. Collagenase-2 (MMP-8) as a point-of-care biomarker in periodontitis and cardiovascular diseases. Therapeutic response to non-antimicrobial properties of tetracyclines. Pharmacol. Res. 63(2), 108–113 (2011).
  • Buduneli N, Kinane DF. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. J. Clin. Periodontol. 38(s11), 85–105 (2011).
  • Chapple IL. Periodontal diagnosis and treatment–where does the future lie? Periodontology 2000 51(1), 9–24 (2009).
  • Bertoldi C, Bellei E, Pellacani C et al. Non-bacterial protein expression in periodontal pockets by proteome analysis. J. Clin. Periodontol. 40(6), 573–582 (2013).
  • Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. Periodontology 2000 31(1), 55–76 (2003).
  • Bostanci N, Ramberg P, Wahlander Å et al. Label-free quantitative proteomics reveals differentially regulated proteins in experimental gingivitis. J. Proteome Res. 12(2), 657–678 (2013).
  • Miller CS, Foley JD, Bailey AL et al. Current developments in salivary diagnostics. Biomarkers 4(1), 171–189 (2010).
  • Castagnola M, Cabras T, Iavarone F et al. The human salivary proteome: a critical overview of the results obtained by different proteomic platforms. Expert Rev. Proteomics 9(1), 33–46 (2012).
  • Helmerhorst E, Oppenheim F. Saliva: a dynamic proteome. J. Dent. Res. 86(8), 680–693 (2007).
  • Morelle W, Canis K, Chirat F, Faid V, Michalski JC. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6(14), 3993–4015 (2006).
  • Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B. 849(1), 115–128 (2007).
  • Loo J, Yan W, Ramachandran P, Wong D. Comparative human salivary and plasma proteomes. J. Dent. Res. 89(10), 1016–1023 (2010).
  • Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J. Sep. Sci. 31(11), 1948–1963 (2008).
  • Krief G, Deutsch O, Zaks B, Wong DT, Aframian DJ, Palmon A. Comparison of diverse affinity based high-abundance protein depletion strategies for improved bio-marker discovery in oral fluids. J. Proteomics 75(13), 4165–4175 (2012).
  • Schipper R, Loof A, de Groot J, Harthoorn L, van Heerde W, Dransfield E. Salivary Protein/Peptide Profiling with SELDI-TOF-MS. Ann. NY. Acad. Sci. 1098(1), 498–503 (2007).
  • Al-Tarawneh SK, Border MB, Dibble CF, Bencharit S. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS: J. Integrative Biol. 15(6), 353–361 (2011).
  • Siqueira WL, Dawes C. The salivary proteome: challenges and perspectives. Proteomics Clin. Appl. 5(11–12), 575–579 (2011).
  • Castagnola M, Inzitari R, Fanali C et al. The surprising composition of the salivary proteome of preterm human newborn. Mol. Cell. Proteomics 10(1) (2011).
  • Cabras T, Pisano E, Boi R et al. Age-dependent modifications of the human salivary secretory protein complex. J. Proteome Res. 8(8), 4126–4134 (2009).
  • Haitinoh J, Ho E. The concentration of proteins in human gingival crevicular fluid. J. Periodontal Res. 15(1), 90–95 (1980).
  • Borden S, Golub L, Kleinberg I. The effect of age and sex on the relationship between crevicular fluid flow and gingival inflammation in humans. J. Periodontal Res. 12(3), 160–165 (1977).
  • Sivakumar T, Hand AR, Mednieks M. Secretory proteins in the saliva of children. J. Oral Sci. 51(4), 573–580 (2009).
  • Bostanci N, Heywood W, Mills K, Parkar M, Nibali L, Donos N. Application of label-free absolute quantitative proteomics in human gingival crevicular fluid by LC/MSE (gingival exudatome). J. Proteome Res. 9(5), 2191–2199 (2010).
  • Quintana M, Palicki O, Lucchi G et al. Inter-individual variability of protein patterns in saliva of healthy adults. J. Proteomics 72(5), 822–830 (2009).
  • Penque D. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin. Appl. 3(2), 155–172 (2009).
  • Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gel-based and gel-free quantitative proteomics approaches at a glance. Int. J. Plant Genomics 2012, 494572 (2012).
  • Inzitari R, Cabras T, Onnis G et al. Different isoforms and post-translational modifications of human salivary acidic proline-rich proteins. Proteomics 5(3), 805–815 (2005).
  • Haigh BJ, Stewart KW, Whelan JR, Barnett MP, Smolenski GA, Wheeler TT. Alterations in the salivary proteome associated with periodontitis. J. Clin. Periodontol. 37(3), 241–247 (2010).
  • Ngo LH, Veith PD, Chen Y-Y, Chen D, Darby IB, Reynolds EC. Mass spectrometric analyses of peptides and proteins in human gingival crevicular fluid. J. Proteome Res. 9(4), 1683–1693 (2010).
  • Trifonova O, Larina I, Grigoriev A, Lisitsa A, Moshkovskii S, Archakov A. Application of 2-DE for studying the variation of blood proteome. Expert Rev. Proteomics 7(3), 431–438 (2010).
  • Nagaraj N, Kulak NA, Cox J et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell. Proteomics 11(3), M111.013722 (2012).
  • Thakur SS, Geiger T, Chatterjee B et al. Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol. Cell. Proteomics 10(8), M110.003699 (2011).
  • Baliban RC, Sakellari D, Li Z, DiMaggio PA, Garcia BA, Floudas CA. Novel protein identification methods for biomarker discovery via a proteomic analysis of periodontally healthy and diseased gingival crevicular fluid samples. J. Clin. Periodontol. 39(3), 203–212 (2012).
  • Baliban RC, Sakellari D, Li Z, Guzman YA, Garcia BA, Floudas CA. Discovery of biomarker combinations that predict periodontal health or disease with high accuracy from GCF samples based on high-throughput proteomic analysis and mixed-integer linear optimization. J. Clin. Periodontol. 40(2), 131–139 (2013).
  • Gesell Salazar M, Jehmlich N, Murr A et al. Identification of periodontitis associated changes in the proteome of whole human saliva by mass spectrometric analysis. J. Clin. Periodontol. 40(9), 825–832 (2013).
  • Grant MM, Creese AJ, Barr G et al. Proteomic analysis of a noninvasive human model of acute inflammation and its resolution: the twenty-one day gingivitis model. J. Proteome Res. 9(9), 4732–4744 (2010).
  • Kido J, Bando M, Hiroshima Y et al. Analysis of proteins in human gingival crevicular fluid by mass spectrometry. J. Periodontal Res. 47(4), 488–499 (2012).
  • Tsuchida S, Satoh M, Kawashima Y et al. Application of quantitative proteomic analysis using tandem mass tags for discovery and identification of novel biomarkers in periodontal disease. Proteomics 13(15), 2339–2350 (2013).
  • Choi Y-J, Heo S-H, Lee J-M, Cho J-Y. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid. Proteome Sci. 9, 42 (2011).
  • Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404(4), 939–965 (2012).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3(12), 1154–1169 (2004).
  • Thompson A, Schäfer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75(8), 1895–1904 (2003).
  • Neilson KA, Ali NA, Muralidharan S et al. Less label, more free: Approaches in label-free quantitative mass spectrometry. Proteomics 11(4), 535–553 (2011).
  • Baliban RC, DiMaggio PA, Plazas-Mayorca MD, Young NL, Garcia BA, Floudas CA. A novel approach for untargeted post-translational modification identification using integer linear optimization and tandem mass spectrometry. Mol. Cell. Proteomics 9(5), 764–779 (2010).
  • DiMaggio J, Peter A, Floudas CA, Lu B, Yates I, John R. A hybrid method for peptide identification using integer linear optimization, local database search, and quadrupole time-of-flight or OrbiTrap tandem mass spectrometry. J. Proteome Res. 7(4), 1584–1593 (2008).
  • DiMaggio PA, Floudas CA. A mixed-integer optimization framework for de novo peptide identification. AICHE J. 53(1), 160–173 (2007).
  • DiMaggio PA, Floudas CA. De novo peptide identification via tandem mass spectrometry and integer linear optimization. Anal. Chem. 79(4), 1433–1446 (2007).
  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data the protein inference problem. Mol. Cell. Proteomics 4(10), 1419–1440 (2005).
  • Baliban RC, DiMaggio PA, Plazas-Mayorca MD, Garcia BA, Floudas CA. PILOT_PROTEIN: identification of unmodified and modified proteins via high-resolution mass spectrometry and mixed-integer linear optimization. J. Proteome Res. 11(9), 4615–4629 (2012).
  • DiMaggio PA, Young NL, Baliban RC, Garcia BA, Floudas CA. A mixed integer linear optimization framework for the identification and quantification of targeted post-translational modifications of highly modified proteins using multiplexed electron transfer dissociation tandem mass spectrometry. Mol. Cell. Proteomics 8(11), 2527–2543 (2009).
  • Torrente MP, Zee BM, Young NL et al. Proteomic interrogation of human chromatin. PloS ONE 6(9), e24747 (2011).
  • Young NL, DiMaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA. High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8(10), 2266–2284 (2009).
  • Young NL, Plazas-Mayorca MD, DiMaggio PA et al. Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a. J. Am. Soc. Mass Spectrom. 21(6), 960–970 (2010).
  • Geromanos SJ, Vissers JP, Silva JC et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6), 1683–1695 (2009).
  • Gillet LC, Navarro P, Tate S et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11(6), O111.016717 (2012).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics 5(4), 573–588 (2006).
  • Ngo LH, Darby IB, Veith PD, Locke AG, Reynolds EC. Mass spectrometric analysis of gingival crevicular fluid biomarkers can predict periodontal disease progression. J. Periodontal. Res. 48(3), 331–341 (2013).
  • He Z, Yu W. Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34(4), 215–225 (2010).
  • Gonçalves LdR, Soares MR, Nogueira FCS et al. Analysis of the salivary proteome in gingivitis patients. J. Periodontal Res. 46(5), 599–606 (2011).
  • Gonçalves LdR, Soares MR, Nogueira FCS et al. Comparative proteomic analysis of whole saliva from chronic periodontitis patients. J. Proteomics 73(7), 1334–1341 (2010).
  • Ebersole J, Machen R, Steffen M, Willmann D. Systemic acute-phase reactants, C-reactive protein and haptoglobin, in adult periodontitis. Clin. Exp. Immunol. 107(2), 347–352 (1997).
  • Socransky S, Haffajee A, Cugini M, Smith C, Kent R. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25(2), 134–144 (1998).
  • Baehni P, Song M, McCulloch C, Ellen R. Treponema denticola induces actin rearrangement and detachment of human gingival fibroblasts. Infect. Immun. 60(8), 3360–3368 (1992).
  • Bildt M, Bloemen M, Kuijpers-Jagtman A, Von den Hoff J. Matrix metalloproteinase inhibitors reduce collagen gel contraction and α-smooth muscle actin expression by periodontal ligament cells. J. Periodontal Res. 44(2), 266–274 (2009).
  • Saba JA, McComb ME, Potts DL, Costello CE, Amar S. Proteomic mapping of stimulus-specific signaling pathways involved in THP-1 cells exposed to Porphyromonas gingivalis or its purified components. J. Proteome Res. 6(6), 2211–2221 (2007).
  • Lockhart PB, Bolger AF, Papapanou PN et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the American Heart Association. Circulation 125(20), 2520–2544 (2012).
  • Griffiths R, Barbour S. Lipoproteins and lipoprotein metabolism in periodontal disease. Clin. Lipidol. 5(3), 397–411 (2010).
  • Pussinen PJ, Jauhiainen M, Vilkuna-Rautiainen T et al. Periodontitis decreases the antiatherogenic potency of high density lipoprotein. J. Lipid Res. 45(1), 139–147 (2004).
  • Miyakawa H, Honma K, Qi M, Kuramitsu HK. Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J. Periodontal. Res. 39(1), 1–9 (2004).
  • Matsuo M. ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci. Biotechnol. Biochem. 74(5), 899–907 (2010).
  • Haririan H, Bertl K, Laky M et al. Salivary and serum chromogranin a and α-amylase in periodontal health and disease. J. Periodontol. 83(10), 1314–1321 (2012).
  • Rai B, Kaur J, Anand S, Jacobs R. Salivary stress markers, stress, and periodontitis: a pilot study. J. Periodontol. 82(2), 287–292 (2011).
  • Wu Y, Shu R, Luo LJ, Ge LH, Xie YF. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis patients and healthy control subjects. J. Periodontal Res. 44(5), 636–644 (2009).
  • Chang X, Han J, Zhao Y, Yan X, Sun S, Cui Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskel. Disord. 11(1), 279 (2010).
  • Lehenkari P, Hentunen TA, Laitala-Leinonen T, Tuukkanen J, Väänänen HK. Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp. Cell Res. 242(1), 128–137 (1998).
  • Panjamurthy K, Manoharan S, Ramachandran CR. Lipid peroxidation and antioxidant status in patients with periodontitis. Cell. Mol. Biol. Lett. 10(2), 255–264 (2005).
  • Wu T, Trevisan M, Genco RJ, Falkner KL, Dorn JP, Sempos CT. Examination of the relation between periodontal health status and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen. Am. J. Epidemiol. 151(3), 273–282 (2000).
  • Sahingur SE, Sharma A, Genco RJ, De Nardin E. Association of increased levels of fibrinogen and the-455G/A fibrinogen gene polymorphism with chronic periodontitis. J. Periodontol. 74(3), 329–337 (2003).
  • Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170(6), 3233–3242 (2003).
  • Inaba H, Hokamura K, Nakano K et al. Upregulation of S100 calcium-binding protein A9 is required for induction of smooth muscle cell proliferation by a periodontal pathogen. FEBS Lett. 583(1), 128–134 (2009).
  • Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8(7), 481–490 (2010).
  • Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J. Clin. Periodontol. 38(s11), 126–141 (2011).
  • Rangé H, Léger T, Huchon C et al. Salivary proteome modifications associated with periodontitis in obese patients. J. Clin. Periodontol. 39(9), 799–806 (2012).
  • Türkoglu O, Emingil G, Kütükçüler N, Atilla G. Evaluation of gingival crevicular fluid adrenomedullin and human neutrophil peptide 1-3 levels of patients with different periodontal diseases. J. Periodontol. 81(2), 284–291 (2010).
  • Lundy F, Orr D, Shaw C, Lamey P-J, Linden G. Detection of individual human neutrophil α-defensins (human neutrophil peptides 1, 2 and 3) in unfractionated gingival crevicular fluid – A MALDI-MS approach. Mol. Immunol., 42(5), 575–579 (2005).
  • Bhawal UK, Sugiyama M, Nomura Y, Kuniyasu H, Tsukinoki K. Loss of 14-3-3 sigma protein expression and presence of human papillomavirus type 16 E6 in oral squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 134(10), 1055 (2008).
  • Ximénez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra-and subgingival plaque in health and periodontitis. J. Clin. Periodontol., 27(9), 648–657 (2000).
  • Siqueira W, Helmerhorst E, Zhang W, Salih E, Oppenheim F. Acquired enamel pellicle and its potential role in oral diagnostics. Ann. NY. Acad. Sci. 1098(1), 504–509 (2007).
  • Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J. Proteome Res. 6(6), 2152–2160 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.