464
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Development of M2BPGi: a novel fibrosis serum glyco-biomarker for chronic hepatitis/cirrhosis diagnostics

References

  • Varki A. Essentials of glycobiology. 2nd edition. Cold spring harbor laboratory press, Cold spring harbor, NY; 1999
  • Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-active enzymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8
  • Carbohydrate-Active enZYmes Database. Available from: www.cazy.org/
  • Japan Consortium for Glycobiology and Glycotechnology DataBase. Available from: http://jcggdb.jp/index_en.html
  • Maeda M, Fujita N, Suzuki Y, et al. JCGGDB: Japan Consortium for Glycobiology and Glycotechnology Database. Methods Mol Biol 2015;1273:161-79
  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126(5):855-67
  • Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005;83(4):429-39
  • Futakawa S, Nara K, Miyajima M, et al. A unique N-glycan on human transferrin in CSF: a possible biomarker for iNPH. Neurobiol Aging 2012;33(8):1807-15
  • Sun W, Grassi P, Engström A, et al. N-glycans of human protein C inhibitor: tissue-specific expression and function. PLoS One 2011;6(12):e29011
  • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001;291(5512):2364-9
  • Jenkins N, Curling EMA. Glycosylation of recombinant proteins: Problems and prospects. Enzyme Microb Technol 1994;16(5):354-64
  • Fukuda MN, Sasaki H, Lopez L, Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 1989;73(1):84-9
  • Bork K, Reutter W, Weidemann W, Horstkorte R. Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 2007;581(22):4195-8
  • Hirao Y, Matsuzaki H, Iwaki J, et al. Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J Proteome Res 2014;13(11):4705-16
  • Matsuda A, Kuno A, Kawamoto T, et al. Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology 2010;52(1):174-82
  • Onuma Y, Tateno H, Hirabayashi J, et al. rBC2LCN, a new probe for live cell imaging of human pluripotent stem cells. Biochem Biophys Res Commun 2013;431(3):524-9
  • Hakomori S. Glycosylation defining cancer malignancy: New wine in an old bottle. Proc Natl Acad Sci 2002;99(16):10231-3
  • Ruhaak LR, Miyamoto S, Lebrilla CB. Developments in the Identification of Glycan Biomarkers for the Detection of Cancer. Mol Cell Proteomics 2013;12(4):846-55
  • Kuno A, Ikehara Y, Tanaka Y, et al. A serum ‘sweet-doughnut’ protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 2013;3:1065
  • Aoyagi Y, Isemura M, Suzuki Y, et al. Fucosylated α-f etoprotein as marker of early hepatocellular carcinoma. Lancet 1985;326(8468):1353-4
  • Kobayashi M, Kuroiwa T, Suda T, et al. Fucosylated fraction of alpha-fetoprotein, L3, as a useful prognostic factor in patients with hepatocellular carcinoma with special reference to low concentrations of serum alpha-fetoprotein. Hepatol Res 2007;37(11):914-22
  • Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 1983;43(11):5489-92
  • Narimatsu H, Iwasaki H, Nakayama F, et al. Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res 1998;58(3):512-18
  • Takeuchi H, Kato K, Denda-Nagai K, et al. The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialyl alpha 2-3galactosyl beta 1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 2002;270(2):199-209
  • Sorensen AL, Reis CA, Tarp MA, et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2006;16(2):96-107
  • Kjeldsen T, Clausen H, Hirohashi S, et al. Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2----6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 1988;48(8):2214-20
  • Yonezawa S, Kitajima S, Higashi M, et al. A novel anti-MUC1 antibody against the MUC1 cytoplasmic tail domain: use in sensitive identification of poorly differentiated cells in adenocarcinoma of the stomach. Gastric Cancer 2012;15(4):370-81
  • Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev 2013;42(10):4443-58
  • Levery SB, Steentoft C, Halim A, et al. Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta-Gen Subj 2015;1850(1):33-42
  • Thaysen-Andersen M, Packer NH. Advances in LC–MS/MS-based glycoproteomics: Getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta - Proteins Proteomics 2014;1844(9):1437-52
  • Narimatsu H, Sawaki H, Kuno A, et al. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 2010;277(1):95-105
  • Kaji H, Ocho M, Togayachi A, et al. Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma. J Proteome Res 2013;12(6):2630-40
  • Kolarich D, Lepenies B, Seeberger PH. Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 2012;16(1–2):214-20
  • Wada Y, Azadi P, Costello CE, et al. Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiol 2007;17(4):411-22
  • Nilsson J, Ruetschi U, Halim A, et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Meth 2009;6(11):809-11
  • Kolli V, Schumacher KN, Dodds ED. Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis 2015;7(1):113-31
  • Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115(2):P209-18
  • Kuno A, Uchiyama N, Koseki-Kuno S, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005;2(11):851-6
  • Kuno A, Kato Y, Matsuda A, et al. Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics 2009;8(1):99-108
  • Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotech 2003;21(6):667-72
  • Kaji H, Yamauchi Y, Takahashi N, Isobe T. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 2007;1(6):3019-27
  • Kuno A, Matsuda A, Ikehara Y, et al. Glycomics. In: Enzymology MFBT-M, Glycomics, editor. Chapter seven - differential glycan profiling by lectin microarray targeting tissue specimens. Academic Press, 2010. p. 165-79
  • Ikehara Y, Sato T, Niwa T, et al. Apical Golgi localization of N,N’-diacetyllactosediamine synthase, beta4GalNAc-T3, is responsible for LacdiNAc expression on gastric mucosa. Glycobiology 2006;16(9):777-85
  • Zhang H, Li X, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotech 2003;21(6):660-6
  • Sugahara D, Tomioka A, Sato T, et al. Large-scale identification of secretome glycoproteins recognized by wisteria floribunda agglutinin: a glycoproteomic approach to biomarker discovery. Proteomics 2015;1-34
  • Sogabe M, Nozaki H, Tanaka N, et al. Novel glycobiomarker for ovarian cancer that detects clear cell carcinoma. J Proteome Res 2014;13(3):1624-35
  • Ocho M, Togayachi A, Iio E, et al. Application of a glycoproteomics-based biomarker development method: alteration in glycan structure on colony stimulating factor 1 receptor as a possible glycobiomarker candidate for evaluation of liver cirrhosis. J Proteome Res 2014;13(3):1428-37
  • Toshima T, Shirabe K, Ikegami T, et al. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP), for assessing liver fibrosis. J Gastroenterol 2015;50(1):76-84
  • Yamasaki K, Tateyama M, Abiru S, et al. Elevated serum levels of Wisteria floribunda agglutinin-positive human Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatology 2014;60(5):1563-70
  • Abe M, Miyake T, Kuno A, et al. Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol 2014;1-9
  • Tamaki N, Kurosaki M, Kuno A, et al. Wisteria floribunda agglutinin positive human Mac-2-binding protein as a predictor of hepatocellular carcinoma development in chronic hepatitis C patients. Hepatol Res 2015. [ Epub ahead of print]
  • UniProtKB - Q08380 (LG3BP_HUMAN). Available from: www.uniprot.org/uniprot/Q08380
  • Sasaki T, Brakebusch C, Engel J, Timpl R. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds β1 integrins, collagens and fibronectin. EMBO J 1998;17(6):1606-13
  • Iacovazzi PA, Trisolini A, Barletta D, et al. Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: a comparison with alpha-fetoprotein. Clin Chem Lab Med 2001;39(10):961-5
  • Kuno A, Ikehara Y, Tanaka Y, et al. LecT-Hepa: A triplex lectin–antibody sandwich immunoassay for estimating the progression dynamics of liver fibrosis assisted by a bedside clinical chemistry analyzer and an automated pretreatment machine. Clin Chim Acta 2011;412(19–20):1767-72
  • Ito K, Kuno A, Ikehara Y, et al. LecT-hepa, a glyco-marker derived from multiple lectins, as a predictor of liver fibrosis in chronic hepatitis C patients. Hepatology 2012;56(4):1448-56
  • Toshima T, Shirabe K, Takeishi K, et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver. J Gastroenterol 2011;46(5):705-11
  • Hanai T, Shiraki M, Ohnishi S, et al. Impact of serum glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein levels on liver functional reserves and mortality in patients with liver cirrhosis. Hepatol Res 2015. [ Epub ahead of print]
  • Lok AS. Personalized treatment of hepatitis B. Clin Mol Hepatol 2015;21(1):1-6
  • Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: Concept to treatment. J Hepatol 2015;62(1 Supp):S15-24.
  • Hirabayashi J, Hayama K, Kaji H, Isobe T, Kasai K. Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J Biochem 2002;132(1):103-14.
  • Iwai T, Kudo T, Kawamoto R, et al. Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci U S A 2005;102(12):4572-77
  • Sato T, Sato M, Kiyohara K, et al. Molecular cloning and characterization of a novel human beta1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology 2006;16(12):1194-1206
  • Ito H, Kameyama A, Sato T, Kiyohara K, Nakahara Y, Narimatsu H. Molecular-weight-tagged glycopeptide library: efficient construction and applications. Angew Chem Int Ed Engl 2005;44(29):4547-9.
  • Ito H, Kameyama A, Sato T, Sukegawa M, Ishida H-K, Narimatsu H. Strategy for the fine characterization of glycosyltransferase specificity using isotopomer assembly. Nat Methods 2007;4(7):577-82.
  • Amano K, Chiba Y, Kasahara Y, et al. Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci U S A 2008;105(9):3232-7
  • Kameyama A, Kikuchi N, Nakaya S, et al. A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem 2005;77(15):4719-25
  • Kameyama A, Nakaya S, Ito H, et al. Strategy for simulation of CID spectra of N-linked oligosaccharides toward glycomics. J Proteome Res 2006;5(4):808-14
  • Ito H, Kameyama A, Sato T, Narimatsu H. Preparation of a glycan library using a variety of glycosyltrasferases. Methods Mol Biol 2009;534:283-91
  • Uchiyama N, Kuno A, Koseki-Kuno S, et al. Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol 2006;415:341-51
  • Kato Y, Kaneko MK, Kuno A, et al. Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 2006;349(4):1301-7
  • Ikehara Y, Niwa T, Biao L, et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res 2006;66(17):8740-8
  • Ikehara N, Shiuchi N, Kabata-Ikehara S, et al. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett 2008;260(1–2):137-45
  • Kikuchi N, Narimatsu H. Bioinformatics for comprehensive finding and analysis of glycosyltransferases. Biochim Biophys Acta 2006;1760(4):578-83
  • Togayachi A, Kozono Y, Ishida H, et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A 2007;104(40):15829-34
  • Togayachi A, Kozono Y, Ikehara Y, et al. Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci U S A 2010;107(26):11900-5
  • Sato T, Kudo T, Ikehara Y, et al. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2011;286(7):5803-12
  • Ito H, Kuno A, Sawaki H, et al. Strategy for glycoproteomics: identification of glyco-alteration using multiple glycan profiling tools. J Proteome Res 2009;8(3):1358-67

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.