493
Views
13
CrossRef citations to date
0
Altmetric
Reviews

MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples

, , , &
Pages 275-284 | Received 06 Dec 2015, Accepted 22 Jan 2016, Published online: 12 Feb 2016

References

  • Waddington CH. Genetic assimilation of the bithorax phenotype. Evolution. 1956;10(1):1–13.
  • Dawson Mark A, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.
  • Skene PJ, Henikoff S. Histone variants in pluripotency and disease. Development. 2013;140(12):2513–2524.
  • Caprioli RM, Farmer T, Fau - Gile J, et al. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69 (23):4751–4760.
  • Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–260.
  • Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145–150.
  • Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions? Biol Chem. 2008;389(4):333–343.
  • Song F, Chen P, Sun D, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 2014;344(6182):376–380.
  • Harshman SW, Young NL, Parthun MR, et al. H1 histones: current perspectives and challenges. Nucleic Acids Res. 2013;41(21):9593–9609.
  • Vignali M, Workman JL. Location and function of linker histones. Nat Struct Biol. 1998;5(12):1025–1028.
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–45.
  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–1080.
  • Dion MF, Altschuler SJ, Wu LF, et al. Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci U.S.A. 2005;102(15):5501–5506.
  • Masri S, Patel VR, Eckel-Mahan KL, et al. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci. 2013;110(9):3339–3344.
  • Peleg S, Sananbenesi F, Zovoilis A, et al. altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010;328(5979):753–756.
  • Taipale M, Rea S, Richter K, et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol. 2005;25(15):6798–6810.
  • Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76(1):75–100.
  • Musselman CA, Lalonde M-E, Cote J, et al. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012;19(12):1218–1227.
  • Taverna SD, Li H, Ruthenburg AJ, et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–1040.
  • Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 2005;19(3):295–316.
  • Chen Y, Hoover ME, Dang X, et al. Quantitative mass spectrometry reveals that intact histone H1 phosphorylations are variant specific and exhibit single molecule hierarchical dependence. Mol Cell Proteomics. 2015 Jul 24. pii: mcp.M114.046441. [Epub ahead of print].
  • Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015;16(11):1439–1453.
  • Kim YZ. Altered histone modifications in gliomas. Brain Tumor Res Treat. 2014;2(1):7–21.
  • Fullgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene. 2011;30(31):3391–3403.
  • Ye J, Ai X, Eugeni EE, et al. Histone H4 lysine 91 acetylation: a core domain modificationassociated with chromatin assembly. Mol Cell. 2005;18(1):123–130.
  • Zhang L, Eugeni E, Parthun M, et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma. 2003;112(2):77–86.
  • Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol. 2015;7(9):a025064.
  • Thorslund T, Ripplinger A, Hoffmann S, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature. 2015;527(7578):389–393.
  • Hu J, Donahue G, Dorsey J, et al. H4K44 acetylation facilitates chromatin accessibility during meiosis. Cell Rep. 2015;13(9):1772–1780.
  • Feng Y, Jankovic J, Wu YC. Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci. 2015;349(1–2):3–9.
  • Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391–400.
  • Waldmann T, Schneider R. Targeting histone modifications–epigenetics in cancer. Curr Opin Cell Biol. 2013;25(2):184–189.
  • Wang J, Yu JT, Tan MS, et al. Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev. 2013;12(4):1024–1041.
  • Zhang Q-J, Liu Z-P. Histone methylations in heart development, congenital and adult heart diseases. Epigenomics. 2015;7(2):321–330.
  • Zheng X-X, Zhou T, Wang X-A, et al. Histone deacetylases and atherosclerosis. Atherosclerosis. 2015;240(2):355–366.
  • Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116(7):1245–1253.
  • Tian W, Xu Y. Decoding liver injury: a regulatory role for histone modifications. Int J Biochem Cell Biol. 2015;67:188–193.
  • Coiffier B, Pro B, Prince HM, et al. results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–636.
  • Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2006;109(1):31–39.
  • Ganai SA, Ramadoss M, Mahadevan V. Histone deacetylase (HDAC) inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol. 2016;14(1):55–71.
  • Eyupoglu IY, Savaskan NE. Epigenetics in brain tumors: HDACs take center stage. Curr Neuropharmacol. 2016;14(1):48–54.
  • Wagner JM, Hackanson B, Lübbert M, et al. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1(3–4):117–136.
  • Munteanu B, Meyer B, Von Reitzenstein C, et al. Label-free in situ monitoring of histone deacetylase drug target engagement by matrix-assisted laser desorption ionization-mass spectrometry biotyping and imaging. Anal Chem. 2014;86(10):4642–4647.
  • Nishikori S, Hattori T, Fuchs SM, et al. Broad ranges of affinity and specificity of anti-histone antibodies revealed by a quantitative peptide immunoprecipitation assay. J Mol Biol. 2012;424(5):391–399.
  • Rothbart SB, Lin S, Britton L-M, et al. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies. Sci Rep. 2012;2:489.
  • Egelhofer TA, Minoda A, Klugman S, et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 2011;18(1):91–93.
  • Britton L-MP, Gonzales-Cope M, Zee BM, et al. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics. 2011;8(5):631–643.
  • Villar-Garea A, Israel L, Imhof A. Analysis of histone modifications by mass spectrometry. In: Current protocols in protein science. John Wiley & Sons, Inc.; 2001. doi:10.1002/0471140864.ps1410s51.
  • Aichler M, Walch A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95(4):422–431.
  • Thavarajah R, Mudimbaimannar VK, Elizabeth J, et al. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 2012;16(3):400–405.
  • Chaurand P, Latham JC, Lane KB, et al. imaging mass spectrometry of intact proteins from alcohol-preserved tissue specimens: bypassing formalin fixation. J Proteome Res. 2008;7(8):3543–3555.
  • Ergin B, Meding S, Langer R, et al. Proteomic analysis of PAXgene-fixed tissues. J Proteome Res. 2010;9(10):5188–5196.
  • Seeley E, Oppenheimer S, Mi D, et al. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom. 2008;19(8):1069–1077.
  • Franck J, Longuespee R, Wisztorski M, et al. MALDI mass spectrometry imaging of proteins exceeding 30,000 Da. Med Sci Monit. 2010;16:BR293−BR299.
  • Martin-Lorenzo M, Balluff B, Sanz-Maroto A, et al. 30mum spatial resolution protein MALDI MSI: in-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. J Proteomics. 2014;108:465–468.
  • van Remoortere A, van Zeijl RJ, van den Oever N, et al. MALDI imaging and profiling MS of higher mass proteins from tissue. J Am Soc Mass Spectrom. 2010;21(11):1922–1929.
  • Grey AC, Chaurand P, Caprioli RM, et al. MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue. J Proteome Res. 2009;8(7):3278–3283.
  • Schey KL, Gutierrez DB, Wang Z, et al. Novel fatty acid acylation of lens integral membrane protein aquaporin-0. Biochemistry. 2010;49(45):9858–9865.
  • Wenke JL, Rose KL, Spraggins JM, et al. MALDI imaging mass spectrometry spatially maps age-related deamidation and truncation of human lens aquaporin-0MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci. 2015;56(12):7398–7405.
  • Deutskens F, Yang J, Caprioli RM. High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J Mass Spectrom. 2011;46(6):568–571.
  • Yang J, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem. 2011;83(14):5728–5734.
  • Van de Plas R, Yang J, Spraggins J, et al. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat Methods. 2015;12(4):366–372.
  • Hardesty WM, Kelley MC, Mi D, et al. Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics. 2011;74(7):1002–1014.
  • Balluff B, Rauser S, Meding S, et al. MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. Am J Pathol. 2011;179(6):2720–2729.
  • Elsner M, Rauser S, Maier S, et al. MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett’s adenocarcinoma. J Proteomics. 2012;75(15):4693–4704.
  • Grüner BM, Hahne H, Mazur PK, et al. MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS ONE. 2012;7(6):e39424.
  • Meding S, Balluff B, Elsner M, et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol. 2012;228(4):459–470.
  • Le Faouder J, Laouirem S, Chapelle M, et al. Imaging mass spectrometry provides fingerprints for distinguishing hepatocellular carcinoma from cirrhosis. J Proteome Res. 2011;10(8):3755–3765.
  • Min K-W, Bang J-Y, Kim KP, et al. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. J Korean Med Sci. 2014;29(7):934–940.
  • Rebours V, Le Faouder J, Laouirem S, et al. In situ proteomic analysis by MALDI imaging identifies ubiquitin and thymosin-β4 as markers of malignant intraductal pancreatic mucinous neoplasms. Pancreatology. 2014;14(2):117–124.
  • Poté N, Alexandrov T, Le Faouder J, et al. Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas. Hepatology. 2013;58(3):983–994.
  • Chan Hyun N, Ji Hye H, Wan Sup K, et al. Identification of protein markers specific for papillary renal cell carcinoma using imaging mass spectrometry. Mol Cells. 2015;38(7):624–629.
  • Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (Review). Int J Oncol. 2015;46:893–906.
  • Lagarrigue M, Alexandrov T, Dieuset G, et al. New analysis workflow for MALDI imaging mass spectrometry: application to the discovery and identification of potential markers of childhood absence epilepsy. J Proteome Res. 2012;11(11):5453–5463.
  • Peffers MJ, Cillero-Pastor B, Eijkel GB, et al. Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Res Ther. 2014;16(3):R110.
  • Hanrieder J, Wicher G, Bergquist J, et al. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue. Anal Bioanal Chem. 2011;401(1):135–147.
  • Morita Y, Ikegami K, Goto-Inoue N, et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci. 2010;101(1):267–273.
  • Li H, Hummon AB. Imaging mass spectrometry of three-dimensional cell culture systems. Anal Chem. 2011;83(22):8794–8801.
  • Djidja M-C, Francese S, Loadman PM, et al. Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics. 2009;9(10):2750–2763.
  • LeRoy G, DiMaggio PA, Chan EY, et al. A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 2013;6:20–20.
  • Lahiri S, Sun N, Solis-Mezarino V, et al. In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry. Proteomics. 2015 Nov 23. doi:10.1002/pmic.201500345. [Epub ahead of print].
  • Maier SK, Hahne H, Gholami AM, et al. Comprehensive identification of proteins from MALDI imaging. Mol Cell Proteomics. 2013;12(10):2901–2910.
  • Spraggins JM, Rizzo DG, Moore JL, et al. MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. J Am Soc Mass Spectrom. 2015;26(6):974–985.
  • Balluff B, Frese CK, Maier SK, et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J Pathol. 2015;235(1):3–13.
  • Rompp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol. 2013;139(6):759–783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.