1,097
Views
53
CrossRef citations to date
0
Altmetric
Review

Intact glycopeptide characterization using mass spectrometry

, , , , &
Pages 513-522 | Received 31 Dec 2015, Accepted 29 Mar 2016, Published online: 03 May 2016

References

  • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–2369.
  • Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–1049.
  • Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.
  • Rudd PM, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science. 2001;291:2370–2376.
  • Khidekel N, Ficarro SB, Peters EC, et al. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A. 2004;101:13132–13137.
  • Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005;21:11–16.
  • Peracaula R, Tabares G, Royle L, et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13:457–470.
  • Kim EH, Misek DE. Glycoproteomics-based identification of cancer biomarkers. Int J Proteomics. 2011;2011:10.
  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10:301–316.
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10:317–327.
  • Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329:856–861.
  • Akahata W, Yang ZY, Andersen H, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16:334–338.
  • Kanekiyo M, Wei CJ, Yassine HM, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–106.
  • Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43R–56R.
  • Pless DD, Lennarz WJ. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci U S A. 1977;74:134–138.
  • Mayampurath AM, Wu Y, Segu ZM, et al. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun Mass Spectrom. 2011;25:2007–2019.
  • Cao L, Tolic N, Qu Y, et al. Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation. Anal Biochem. 2014;452:96–102.
  • Tarentino AL, Plummer TH Jr. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 1994;230:44–57.
  • Plummer TH, Elder JH, Alexander S, et al. Demonstration of peptide – N-glycosidase-F activity in endo-beta-N-acetylglucosaminidase F preparations. J Biol Chem. 1984;259:700–704.
  • Kakehi K, Susami A, Taga A, et al. High-performance capillary electrophoresis of O-glycosidically linked sialic acid-containing oligosaccharides in glycoproteins as their alditol derivatives with low-wavelength UV monitoring. J Chromatogr A. 1994;680:209–215.
  • Royle L, Mattu TS, Hart E, et al. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem. 2002;304:70–90.
  • Parker BL, Palmisano G, Edwards AV, et al. Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics. 2011;10:M110 006833.
  • Pasing Y, Sickmann A, Lewandrowski U. N-glycoproteomics: mass spectrometry-based glycosylation site annotation. Biol Chem. 2012;393:249–258.
  • Chen W, Smeekens JM, Wu R. A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol Cell Proteomics. 2014;13:1563–1572.
  • Yabu M, Korekane H, Miyamoto Y. Precise structural analysis of O-linked oligosaccharides in human serum. Glycobiology. 2014;24:542–553.
  • Houel S, Hilliard M, Yu YQ, et al. N- and O-glycosylation analysis of etanercept using liquid chromatography and quadrupole time-of-flight mass spectrometry equipped with electron-transfer dissociation functionality. Anal Chem. 2014;86:576–584.
  • Scott NE, Parker BL, Connolly AM, et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics. 2011;10:M000031–MCP201.
  • Trinidad JC, Schoepfer R, Burlingame AL, et al. N- and O-glycosylation in the murine synaptosome. Mol Cell Proteomics. 2013;12:3474–3488.
  • Yin X, Bern M, Xing Q, et al. Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics. 2013;12:956–978.
  • Yu YQ, Fournier J, Gilar M, et al. Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry. Anal Chem. 2007;79:1731–1738.
  • Froehlich JW, Barboza M, Chu C, et al. Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal Chem. 2011;83:5541–5547.
  • Alley WR Jr., Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev. 2013;113:2668–2732.
  • Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem. 2007;282:2753–2764.
  • Fanayan S, Hincapie M, Hancock WS. Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis. 2012;33:1746–1754.
  • Chowdhury S, Ray S, Chatterjee B. Single step purification of polysaccharides using immobilized jackfruit lectin as affinity adsorbent. Glycoconj J. 1988;5:27–34.
  • Sumi S, Arai K, Kitahara S, et al. Serial lectin affinity chromatography demonstrates altered asparagine-linked sugar-chain structures of prostate-specific antigen in human prostate carcinoma. J Chromatogr B. 1999;727:9–14.
  • Zeng Z, Hincapie M, Pitteri SJ, et al. A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem. 2011;83:4845–4854.
  • Steentoft C, Bennett EP, Clausen H. Glycoengineering of human cell lines using zinc finger nuclease gene targeting: SimpleCells with homogeneous GalNAc O-glycosylation allow isolation of the O-glycoproteome by one-step lectin affinity chromatography. Methods Mol Biol. 2013;1022:387–402.
  • Wohlgemuth J, Karas M, Eichhorn T, et al. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem. 2009;395:178–188.
  • Scanlin TF, Glick MC. Terminal glycosylation and disease: influence on cancer and cystic fibrosis. Glycoconj J. 2000;17:617–626.
  • Arnold JN, Saldova R, Galligan MC, et al. Novel glycan biomarkers for the detection of lung cancer. J Proteome Res. 2011;10:1755–1764.
  • Miyahara K, Nouso K, Saito S, et al. Serum glycan markers for evaluation of disease activity and prediction of clinical course in patients with ulcerative colitis. PLoS One. 2013;8:e74861.
  • Larsen MR, Jensen SS, Jakobsen LA, et al. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics. 2007;6:1778–1787.
  • Palmisano G, Lendal SE, Larsen MR. Titanium dioxide enrichment of sialic acid-containing glycopeptides. Methods Mol Biol. 2011;753:309–322.
  • Thaysen-Andersen M, Larsen MR, Packer NH, et al. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Advances. 2013;3:22683–22705.
  • Roper SM, Zemskova M, Neely BA, et al. Targeted glycoprotein enrichment and identification in stromal cell secretomes using azido sugar metabolic labeling. Proteomics Clin Appl. 2013;7:367–371.
  • Zhang H, Li XJ, Martin DB, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21:660–666.
  • Wang L, Aryal UK, Dai Z, et al. Mapping N-linked glycosylation sites in the secretome and whole cells of Aspergillus niger using hydrazide chemistry and mass spectrometry. J Proteome Res. 2012;11:143–156.
  • Nilsson J, Ruetschi U, Halim A, et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods. 2009;6:809–811.
  • Halim A, Nilsson J, Ruetschi U, et al. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol Cell Proteomics. 2012;11:M111 013649.
  • Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev. 2009;28:192–206.
  • Takegawa Y, Ito H, Keira T, et al. Profiling of N- and O-glycopeptides of erythropoietin by capillary zwitterionic type of hydrophilic interaction chromatography/electrospray ionization mass spectrometry. J Sep Sci. 2008;31:1585–1593.
  • Zauner G, Koeleman CA, Deelder AM, et al. Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J Sep Sci. 2010;33:903–910.
  • Qu Y, Feng J, Deng S, et al. Structural analysis of N- and O-glycans using ZIC-HILIC/dialysis coupled to NMR detection. Fungal Genet Biol. 72:207–215. DOI:10.1016/j.fgb.2014.08.001
  • Teutenberg T, Tuerk J, Holzhauser M, et al. Evaluation of column bleed by using an ultraviolet and a charged aerosol detector coupled to a high-temperature liquid chromatographic system. J Chromatogr. 2006;1119:197–201.
  • Barrett DA, Pawula M, Knaggs RD, et al. Retention behavior of morphine and its metabolites on a porous graphitic carbon column. Chromatographia. 1998;47:667–672.
  • Monser L. Liquid chromatographic determination of four purine bases using porous graphitic carbon column. Chromatographia. 2004;59:455–459.
  • Brokl M, Hernandez-Hernandez O, Soria AC, et al. Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J Chromatogr A. 2011;1218:7697–7703.
  • Hua S, Hu CY, Kim BJ, et al. Glyco-analytical multispecific proteolysis (Glyco-AMP): a simple method for detailed and quantitative Glycoproteomic characterization. J Proteome Res. 2013;12:4414–4423.
  • Nwosu CC, Seipert RR, Strum JS, et al. Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J Proteome Res. 2011;10:2612–2624.
  • An HJ, Peavy TR, Hedrick JL, et al. Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem. 2003;75:5628–5637.
  • West C, Elfakir C, Lafosse M. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr. 2010;1217:3201–3216.
  • Pagel K, Harvey DJ. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal Chem. 2013;85:5138–5145.
  • Both P, Green AP, Gray CJ, et al. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat Chem. 2014;6:65–74.
  • Zhu F, Trinidad JC, Clemmer DE. Glycopeptide site heterogeneity and structural diversity determined by combined lectin affinity chromatography/IMS/CID/MS techniques. J Am Soc Mass Spectrom. 2015;26:1092–1102.
  • Clowers BH, Dwivedi P, Steiner WE, et al. Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J Am Soc Mass Spectrom. 2005;16:660–669.
  • Shi T, Fillmore TL, Sun X, et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A. 2012;109:15395–15400.
  • Creese AJ, Cooper HJ. Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal Chem. 2012;84:2597–2601.
  • Li HL, Bendiak B, Siems WF, et al. Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)(2). Anal Chem. 2013;85:2760–2769.
  • Damen CW, Chen W, Chakraborty AB, et al. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom. 2009;20:2021–2033.
  • Isailovic D, Plasencia MD, Gaye MM, et al. Delineating diseases by IMS-MS profiling of serum N-linked glycans. J Proteome Res. 2012;11:576–585.
  • Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nat Protoc. 2007;2:1585–1602.
  • Wuhrer M, Catalina MI, Deelder AM, et al. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;849:115–128.
  • Syka JE, Coon JJ, Schroeder MJ, et al. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101:9528–9533.
  • Darula Z, Medzihradszky KF. Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol Cell Proteomics. 2009;8:2515–2526.
  • Thaysen-Andersen M, Wilkinson BL, Payne RJ, et al. Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS. Electrophoresis. 2011;32:3536–3545.
  • Alley WR Jr., Mechref Y, Novotny MV. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom. 2009;23:161–170.
  • Alfaro JF, Gong CX, Monroe ME, et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A. 2012;109:7280–7285.
  • Steentoft C, Vakhrushev SY, Vester-Christensen MB, et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods. 2011;8:977–982.
  • Olsen JV, Macek B, Lange O, et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4:709–712.
  • Jedrychowski MP, Huttlin EL, Haas W, et al. Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics. 2011;10:M111 009910.
  • Segu ZM, Mechref Y. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom. 2010;24:1217–1225.
  • Yang W, Shah P, Toghi Eshghi S, et al. Glycoform analysis of recombinant and human immunodeficiency virus envelope protein gp120 via higher energy collisional dissociation and spectral-aligning strategy. Anal Chem. 2014;86:6959–6967.
  • Singh C, Zampronio CG, Creese AJ, et al. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res. 2012;11:4517–4525.
  • Halim A, Westerlind U, Pett C, et al. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J Proteome Res. 2014;13:6024–6032.
  • Cooper CA, Gasteiger E, Packer NH. GlycoMod–a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics. 2001;1:340–349.
  • Apte A, Meitei NS. Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol Biol. 2010;600:269–281.
  • Mayampurath A, Yu CY, Song E, et al. Computational framework for identification of intact glycopeptides in complex samples. Anal Chem. 2014;86:453–463.
  • Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;40:13.20:13.20.1–13.20.14. (Unit 13.20 in book Current Protocols in Bioinformatics, page 1–14). DOI: 10.1002/0471250953.bi1320s40
  • Woodin CL, Hua D, Maxon M, et al. GlycoPep grader: a web-based utility for assigning the composition of N-linked glycopeptides. Anal Chem. 2012;84:4821–4829.
  • Serang O, Froehlich JW, Muntel J, et al. SweetSEQer, simple de novo filtering and annotation of glycoconjugate mass spectra. Mol Cell Proteomics. 2013;12:1735–1740.
  • Strum JS, Nwosu CC, Hua S, et al. Automated assignments of N- and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal Chem. 2013;85:5666–5675.
  • Wu SW, Liang SY, Pu TH, et al. Sweet-Heart – an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J Proteomics. 2013;84:1–16.
  • Toghi Eshghi S, Shah P, Yang W, et al. GPQuest: a spectral library matching algorithm for site-specific assignment of tandem mass spectra to intact N-glycopeptides. Anal Chem. 2015;87:5181–5188.
  • Chandler KB, Pompach P, Goldman R, et al. Exploring site-specific N-glycosylation microheterogeneity of haptoglobin using glycopeptide CID tandem mass spectra and glycan database search. J Proteome Res. 2013;12:3652–3666.
  • He L, Xin L, Shan B, et al. GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J Proteome Res. 2014;13:3881–3895.
  • Shen Y, Tolić N, Hixson KK, et al. De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins. Anal Chem. 2008;80:7742–7754.
  • Froehlich JW, Dodds ED, Wilhelm M, et al. A classifier based on accurate mass measurements to aid large scale, unbiased glycoproteomics. Mol Cell Proteomics. 2013;12:1017–1025.
  • Parker BL, Thaysen-Andersen M, Solis N, et al. Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res. 2013;12:5791–5800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.