269
Views
33
CrossRef citations to date
0
Altmetric
Review

Role of proteomics in translational research in cervical cancer

&
Pages 21-36 | Published online: 09 Jan 2014

References

  • Walboomers JM, Jacobs MV, Manos MM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189(1), 12–19 (1999).
  • Park JS, Hwang ES, Park SN et al. Physical status and expression of HPV genes in cervical cancers. Gynecol. Oncol. 65(1), 121–129 (1997).
  • Lipari F, McGibbon GA, Wardrop E, Cordingley MG. Purification and biophysical characterization of a minimal functional domain and of an N-terminal Zn2+-binding fragment from the human papillomavirus Type 16 E6 protein. Biochemistry 40(5), 1196–1204 (2001).
  • Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67(3), 547–556 (1991).
  • Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin. Cancer Biol. 7(6), 327–337 (1996).
  • Lipinski MM, Jacks T. The retinoblastoma gene family in differentiation and development. Oncogene 18(55), 7873–7882 (1999).
  • Chellappan S, Kraus VB, Kroger B et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl Acad. Sci. USA 89(10), 4549–4553 (1992).
  • Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT. Differentiation-dependent upregulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9(19), 233523–233549 (1995).
  • Wilkins MR, Sanchez JC, Gooley JC et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19–50 (1995).
  • Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 4(5), 489–494 (2000).
  • Gorg A, Obermaier C, Boguth G et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6), 1037–1053 (2000).
  • Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG. A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 14(12), 1047–1057 (2000).
  • Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotech.19(3), 242–247 (2001).
  • Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Electrophoresis 21(6), 1164–1177 (2000).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002).
  • Liotta LA, Espina V, Mehta AI et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3(4), 317–325 (2003).
  • Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48(8), 1296–1304 (2002).
  • Adam BL, Qu Y, Davis JW et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62(13), 3609–3614 (2003).
  • Grubb RL, Calvert VS, Wulkuhle JD et al. Signal pathway profiling of prostate cancer using reverse phase protein array. Proteomics 3(11), 2142–2146 (2003).
  • Diamandis EP. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl Cancer Inst. 96(5), 353–356 (2004).
  • Mahlck CG, Grankvist K. Plasma prealbumin in women with epithelial ovarian carcinoma. Gynecol. Obstet. Investig. 37(2), 135–140 (1994).
  • Yim EK, Meoyng J, Namakoong SE, Um SJ, Park JS. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol. 23(12), 826–835 (2004).
  • Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF. The PDZ ligand domain of the human papillomavirus Type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J. Virol. 77(12), 6957–6964 (2003).
  • Thomas M, Laura R, Hepner K et al. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21(33), 5088–5096 (2002).
  • Kiyono T, Hiraiwa A, Fujita M et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci. USA 94(21), 11612–11616 (1997).
  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6), 1129–1136 (1990).
  • Degenhardt K, Sundararajan R, Lindsten T, Thompson C, White E. Bax and Bak independently promote cytochrome c release from mitochondria. J. Biol. Chem. 277(16), 14127–14134 (2002).
  • Cheng EH, Wei MC, Weiler S et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8(3), 705–711 (2001).
  • Cao Z, Xiong J, Takeuchi M et al. TRAF6 is a signal transducer for interleukin1. Nature 383, 443–446 (1996)
  • Kaufmann W, Schwartz J, Hurt J et al. Inactivation of G2 checkpoint function and chromosomal destabilization are linked in human fibroblasts expressing human papillomavirus Type 16 E6. Cell Growth Differ. 8(10), 1105–1114 (1997).
  • Park JS, Kim EJ, Lee JY et al. Funtional inactivation of p73, a homolog of p53 tumor suppressor protein, by the human papillomavirus E6 proteins. Int. J. Cancer 91(6), 822–827 (2001).
  • Huh KW, DeMasi J, Ogawa H et al. Association of the human papillomavirus Type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl Acad. Sci. USA 102(32), 11492–11497 (2005).
  • Park JS, Kim EJ, Kwon HJ et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein; implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275(10), 6764–6769 (2000).
  • Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-α. Virology 259(2), 305–313 (1999).
  • Lee KA, Shim JH, Kho CW et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics 4(3), 839–848 (2004).
  • Versteege I, Medjkane S, Rouillard D, Delattre O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1–S transition of the cell cycle. Oncogene 21(42), 403–412 (2002).
  • Lee D, Kim JW, Seo T et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 277(25), 22330–22337 (2002).
  • Tokunaga E, Maehara Y, Oki E et al. Diminished expression of ING1 mRNA and the correlation with p53 expression in breast cancers. Cancer Lett. 152(1), 15–22 (2000).
  • Lee KA, Kang JW, Shim JH et al. Protein profiling and identification of modulators regulated by human papillomavirus 16 E7 oncogene in HaCaT keratinocytes by proteomics. Gynecol. Oncol. 99(1), 142–152 (2005).
  • Tremblay GM, Janelle MF, Bourbonnais Y. Anti-inflammatory activity of neutrophil elastase inhibitors. Curr. Opin. Invest. Drugs 4(5), 556–565 (2003).
  • Kimura E, Enns RE, Thiebaut F, Howell SB. Regulation of HSP60 mRNA expression in a human ovarian carcinoma cell line. Cancer Chemother. Pharmacol. 32(4), 279–285 (1993).
  • Yokota S, Yanagi H, Yura T, Kubota H. Cytosolic chaperonin is upregulated during cell growth. Preferential expression and binding to tubulin at G1/S transition through early S phase. J. Biol. Chem. 274(52), 37070–37078 (1999).
  • Song K, Jung D, Jung Y, Lee SG, Lee I. Interaction of human Ku70 with TRF2. FEBS Lett. 481(1), 81–85 (2000).
  • Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem. 276(5), 3238–3246 (2001).
  • Hlavaty JL, Partin AW, Kusinitz F et al. Mass spectroscopy as a discovery tool for identifying serum markers for prostate cancer. Clin. Chem. 48(8), 1924–1926 (2001).
  • Wong YF, Cheung TH, Lo KW et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett. 211(2), 227–234 (2004).
  • Vacca A, Ribatti D, Iurlaro M et al. Docetaxel versus paclitaxel for anti-angiogenesis. Hematother. Stem Cell Res. 2(11), 103–118 (2002).
  • Lee KH, Yim EK, Kim CJ et al. Proteomic analysis of anticancer effects by paclitaxel treatment in cervical cancer cells. Gynecol. Oncol. 98(1), 45–53 (2005).
  • Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 48(3), 381–395 (1990).
  • Wu XX, Kakehi Y, Mizutani Y et al. Activation of caspase-3 in renal cell carcinoma cells by anthracyclines or 5-fluorouracil. Int. J. Oncol. 19(1), 19–24 (2001).
  • Yim EK, Lee KH, Bae JS et al. Proteomic analysis of antiproliferative effects by treatment of 5-fluorouracil in cervical cancer cells. DNA Cell Biol. 23(11), 769–776 (2004).
  • Huang H, Huang SY, Chen TT et al. Cisplatin restores p53 function and enhances the radiosensitivity in HPV 16 E6 containing SiHa cells. J. Cell Biochem. 91(4), 756–765 (2004).
  • Zamble DB, Mu D, Reardon JT. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 35(31), 10004–10013 (1996).
  • Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275(50), 39435–39443 (2000).
  • Castagna A, Antonioli P, Astner H et al. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics 4(10), 3246–3267 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.