79
Views
0
CrossRef citations to date
0
Altmetric
Review

Delineating signal transduction pathways in smooth muscle through focused proteomics

&
Pages 75-85 | Published online: 09 Jan 2014

References

  • Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83(4), 1325–1358 (2003).
  • Seko T, Ito M, Kureishi Y et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ. Res. 92(4), 411–418 (2003).
  • Hartshorne DJ, Ito M, Erdodi F. Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J. Biol. Chem. 279(36), 37211–37214 (2004).
  • Kitazawa T, Masuo M, Somlyo AP. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl Acad. Sci. USA 88(20), 9307–9310 (1991).
  • Yoshimura H, Jones KA, Perkins WJ, Kai T, Warner DO. Calcium sensitization produced by G protein activation in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L631–L638 (2001).
  • Pfitzer G. Invited review: regulation of myosin phosphorylation in smooth muscle. J. Appl. Physiol. 91(1), 497–503 (2001).
  • Gohla A, Schultz G, Offermanns S. Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87(3), 221–227 (2000).
  • Graves PR, Haystead TA. Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66(1), 39–63 (2002).
  • Graves PR, Haystead TA. A functional proteomics approach to signal transduction. Recent. Prog. Horm. Res. 58, 1–24 (2003).
  • Kabuyama Y, Resing KA, Ahn NG. Applying proteomics to signaling networks. Curr. Opin. Genet. Dev. 14(5), 492–498 (2004).
  • Cheng X. Understanding signal transduction through functional proteomics. Expert Rev. Proteomics 2(1), 103–116 (2005).
  • Klose J, Nock C, Herrmann M et al. Genetic analysis of the mouse brain proteome. Nature Genet. 30(4), 385–393 (2002).
  • Heinke MY, Wheeler CH, Yan JX et al. Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 20(10), 2086–2093 (1999).
  • Scheler C, Li XP, Salnikow J, Dunn MJ, Jungblut PR. Comparison of two-dimensional electrophoresis patterns of heat shock protein Hsp27 species in normal and cardiomyopathic hearts. Electrophoresis 20(18), 3623–3628 (1999).
  • Shaw AC, Rossel Larsen M, Roepstorff P, Holm A, Christiansen G, Birkelund S. Mapping and identification of HeLa cell proteins separated by immobilized pH-gradient two-dimensional gel electrophoresis and construction of a two-dimensional polyacrylamide gel electrophoresis database. Electrophoresis 20(4–5), 977–983 (1999).
  • Gorg A, Obermaier C, Boguth G et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6), 1037–1053 (2000).
  • Paoletti AC, Zybailov B, Washburn MP. Principles and applications of multidimensional protein identification technology. Expert Rev. Proteomics 1(3), 275–282 (2004).
  • Skop AR, Liu H, Yates J III, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305(5680), 61–66 (2004).
  • Graumann J, Dunipace LA, Seol JH et al. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell. Proteomics 3(3), 226–237 (2004).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17(10), 994–999 (1999).
  • Wu CC, Yates JR III. The application of mass spectrometry to membrane proteomics. Nature Biotechnol. 21(3), 262–267 (2003).
  • Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA 100(10), 5813–5818 (2003).
  • Gerner C, Frohwein U, Gotzmann J et al. The Fas-induced apoptosis analyzed by high throughput proteome analysis. J. Biol. Chem. 275(50), 39018–39026 (2000).
  • Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S. Functional proteomics of transforming growth factor-β1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1-dependent regulation of DNA repair. EMBO J. 21(5), 1219–1230 (2002).
  • Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aebersold R, Eisenman RN. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21(19), 5088–5096 (2002).
  • Machuy N, Thiede B, Rajalingam K et al. A global approach combining proteome analysis and phenotypic screening with RNA interference yields novel apoptosis regulators. Mol. Cell. Proteomics 4(1), 44–55 (2005).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19(3), 1720–1730 (1999).
  • Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21(6), 1104–1115 (2000).
  • Feng J, Ito M, Ichikawa K et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J. Biol. Chem. 274(52), 37385–37390 (1999).
  • Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegman MJ, Butler TM. Thiophosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphatase in α-toxin-permeabilized smooth muscle. J. Biol. Chem. 270(31), 18191–18194 (1995).
  • Kimura K, Ito M, Amano M et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272), 245–248 (1996).
  • Uehata M, Ishizaki T, Satoh H et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654), 990–994 (1997).
  • Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 372(6503), 231–236 (1994). Erratum in: Nature 372(6508), 812 (1994).
  • Haystead CM, Gregory P, Sturgill TW, Haystead TA. γ-phosphate-linked ATP-sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Eur. J. Biochem. 214(2), 459–467 (1993).
  • MacDonald JA, Borman MA, Muranyi A, Somlyo AV, Hartshorne DJ, Haystead TA. Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc. Natl Acad. Sci. USA 98(5), 2419–2424 (2001).
  • Borman MA, MacDonald JA, Muranyi A, Hartshorne DJ, Haystead TA. Smooth muscle myosin phosphatase-associated kinase induces Ca2+ sensitization via myosin phosphatase inhibition. J. Biol. Chem. 277(26), 23441–23446 (2002).
  • James P, Quadroni M, Carafoli E, Gonnet G. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195(1), 58–64 (1993).
  • Jensen ON, Podtelejnikov AV, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal. Chem. 69(23), 4741–4750 (1997).
  • Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22(6), 338–345 (1993).
  • Pappin DJC, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332 (1993).
  • Qin J, Fenyo D, Zhao Y et al. A strategy for rapid, high-confidence protein identification. Anal. Chem. 69(19), 3995–4001 (1997).
  • Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71(14), 2871–2882 (1999).
  • Green MK, Johnston MV, Larsen BS. Mass accuracy and sequence requirements for protein database searching. Anal. Biochem. 275(1), 39–46 (1999).
  • McDonald WH, Yates JR III. Proteomic tools for cell biology. Traffic 1(10), 747–754 (2000).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999).
  • Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass-sepctral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
  • Fenyo D. Identifying the proteome: software tools. Curr. Opin. Biotechnol. 11(4), 391–395 (2000).
  • Mackey AJ, Haystead TA, Pearson WR. Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol. Cell. Proteomics 1(2), 139–147 (2002).
  • Neubauer G, Gottschalk A, Fabrizio P, Seraphin B, Luhrmann R, Mann M. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94(2), 385–390 (1997).
  • Hubbard MJ, Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18(5), 172–177 (1993).
  • Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49(1–3), 335–360 (2001).
  • Sulkowski E. Purification of proteins by IMAC. Trends Biotechnol. 3, 1–7 (1985).
  • Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol. 19, 379–382 (2001).
  • Fadden P, Haystead TA. Quantitative and selective fluorophore labeling of phosphoserine on peptides and proteins: characterization at the attomole level by capillary electrophoresis and laser-induced fluorescence. Anal. Biochem. 225(1), 81–88 (1995).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22(9), 1139–1145 (2004).
  • Salomon AR, Ficarro SB, Brill LM et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl Acad. Sci. USA 100(2), 443–448 (2003).
  • Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nature Biotechnol. 19(4), 375–378 (2001).
  • Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J. Cell Physiol. 184(3), 409–420 (2000).
  • Wooldridge AA, MacDonald JA, Erdodi F et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279(33), 34496–34504 (2004).
  • Neubauer G, Mann M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal. Chem. 71(1), 235–242 (1999).
  • MacDonald JA, Mackey AJ, Pearson WR, Haystead TA. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell. Proteomics 1(4), 314–322 (2002).
  • Mackey AJ, Haystead TA, Pearson WR. CRP: cleavage of radiolabeled phosphoproteins. Nucleic Acids Res. 31(13), 3859–3861 (2003).
  • Graves PR, Winkfield KM, Haystead TA. Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J. Biol. Chem. 280(10), 9363–9374 (2005). Erratum in: J. Biol. Chem. 280(24), 23424 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.