131
Views
25
CrossRef citations to date
0
Altmetric
Review

Proteomics of the human malaria parasite Plasmodium falciparum

&
Pages 87-95 | Published online: 09 Jan 2014

References

  • Pinswasdi C, Thaithong S, Beale GH, Fenton B, Webster HK, Pavanand K. Polymorphism of proteins in malaria parasites following mefloquine treatment. Mol. Biochem. Parasitol. 23(2), 159–164 (1987).
  • Horgan G, Creasey A, Fenton B. Superimposing 2-dimensional gels to study genetic variation in malaria parasites. Electrophoresis 13(11), 871–875 (1992).
  • Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906), 498–511 (2002).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003).
  • Cohen AM, Rumpel K, Coombs GH, Wastling JM. Characterisation of global protein expression by two-dimensional electrophoresis and mass spectrometry: proteomics of Toxoplasma gondii. Int. J. Parasit. 32(1), 39–51 (2002).
  • Florens L, Washburn MP, Raine JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419(6906), 520–526 (2002).
  • Lasonder E, Ishihama Y, Andersen JS et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419(6906), 537–542 (2002).
  • Hall N, Karras M, Raine JD et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706), 82–86 (2005).
  • Sam-Yellowe TY, Florens L, Johnson JR et al. A Plasmodium gene family encoding Maurer’s cleft membrane proteins: structural properties and expression profiling. Genome Res. 14(6), 1052–1059 (2004).
  • Vincensini L, Richert S, Blisnick T et al. Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol. Cell. Proteomics 4(4), 582–593 (2005).
  • Nyalwidhe J, Baumeister S, Lingelbach K. Proteomic approach towards the characterization of the parasitophorous vacuole in Plasmodium falciparum-infected erythrocytes. Int. J. Med. Microbiol. 29392–29393 (2004).
  • Kaneko O, Tsuboi T, Ling IT et al. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol. Biochem. Parasitol. 118(2), 223–231 (2001).
  • Sam-Yellowe TY, Florens L, Wang TM et al. Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J. Proteome Res. 3(5), 995–1001 (2004).
  • Florens L, Liu X, Wang YF et al. Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol. Biochem. Parasitol. 135(1), 1–11 (2004).
  • Sinden RE. A proteomic analysis of malaria biology: integration of old literature and new technologies. Int. J. Parasit. 34(13–14), 1441–1450 (2004).
  • Khan SM, Franke-Fayard B, Mair GR et al. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121(5), 675–687 (2005).
  • Campanale N, Nickel C, Daubenberger CA et al. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. J. Biol. Chem. 278(30), 27354–27361 (2003).
  • Knockaert M, Gray N, Damiens E et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem. Biol. 7(6), 411–422 (2000).
  • Graves PR, Kwiek JJ, Fadden P et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol. Pharmacol. 62(6), 1364–1372 (2002).
  • Jeffery DA, Bogyo M. Chemical proteomics and its application to drug discovery. Drug Discov. Today 9(2), S19–S26 (2004).
  • Doerig C, Meijer L, Mottram JC. Protein kinases as drug targets in parasitic protozoa. Trends Parasitol. 18(8), 366–371 (2002).
  • Phillips CI, Bogyo M. Proteomics meets microbiology: technical advances in the global mapping of protein expression and function. Cell. Microbiol. 7(8), 1061–1076 (2005).
  • Fried M, Wendler JN, Mutabingwa TK, Duffy PE. Mass spectrometric analysis of Plasmodium falciparum erythrocyte membrane protein-1 variants expressed by placental malaria parasites. Proteomics 4(4), 1086–1093 (2004).
  • Salanti A, Dahlback M, Turner L et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200(9), 1197–1203 (2004).
  • Sanders PR, Gilson PR, Cantin GT et al. Distinct protein classes including novel merozoite surface antigens in raft-like membranes of Plasmodium falciparum. J. Biol. Chem. 280(48), 40169–40176 (2005).
  • Nirmalan N, Sims PFG, Hyde JE. Quantitative proteomics of the human malaria parasite Plasmodium falciparum and its application to studies of development and inhibition. Mol. Microbiol. 52(4), 1187–1199 (2004).
  • Gowda DC, Davidson EA. Protein glycosylation in the malaria parasite. Parasitol. Today 15(4), 147–152 (1999).
  • Jones GL, Edmundson HM. Protein phosphorylation during the asexual life-cycle of the human malarial parasite Plasmodium falciparum. Biochim. Biophys. Acta 1053(2–3), 118–124 (1990).
  • Suetterlin BW, Kappes B, Franklin RM. Localization and stage-specific phosphorylation of Plasmodium falciparum phosphoproteins during the intraerythrocytic cycle. Mol. Biochem. Parasitol. 46(1), 113–122 (1991).
  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121(1), 25–36 (2005).
  • Schmitz S, Grainger M, Howell S et al. Malaria parasite actin filaments are very short. J. Mol. Biol. 349(1), 113–125 (2005).
  • Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J. Biol. Chem. 272(10), 6428–6439 (1997).
  • Gowda DC, Davidson E. More on protein glycosylation in the malaria parasite – Reply. Parasitol. Today 16(1), 39–40 (2000).
  • Kimura EA, Katzin AM, Couto AS. More on protein glycosylation in the malaria parasite. Parasitol. Today 16(1), 38–39 (2000).
  • Doerig C. Protein kinases as targets for antiparasitic chemotherapy. Biochim. Biophys. Acta – Proteins Proteomics 1697(1–2), 155–168 (2004).
  • Medzihradszky KF, Darula Z, Perlson E et al. O-sulfonation of serine and threonine – mass spectrometric detection and characterization of a new posttranslational modification in diverse proteins throughout the eukaryotes. Mol. Cell. Proteomics 3(5), 429–440 (2004).
  • Moore KL. The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278(27), 24243–24246 (2003).
  • Gunasekera AM, Patankar S, Schug J, Eisen G, Wirth DF. Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Mol. Microbiol. 50(4), 1229–1239 (2003).
  • Makanga M, Bray PG, Horrocks P, Ward SA. Towards a proteomic definition of CoArtem action in Plasmodium falciparum malaria. Proteomics 5(7), 1849–1858 (2005).
  • Ong SE, Foster LJ, Mann M. Mass spectrometric-based approaches in quantitative proteomics. Methods 29(2), 124–130 (2003).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17(10), 994–999 (1999).
  • DeSouza L, Diehl G, Rodrigues MJ et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and clCAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4(2), 377–386 (2005).
  • Smolka MB, Zhou HL, Purkayastha S, Aebersold R. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal. Biochem. 297(1), 25–31 (2001).
  • Ong S-E, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1(5), 376–386 (2002).
  • Bigwarfe PM, Wood TD. Effect of ionization mode in the analysis of proteolytic protein digests. Int. J. Mass Spectrom. 234(1–3), 185–202 (2004).
  • Tholey A, Toll H, Huber CG. Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases. Anal. Chem. 77(14), 4618–4625 (2005).
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA 101(26), 9528–9533 (2004).
  • White NJ, Pongtavornpinyo W. The de novo selection of drug-resistant malaria parasites. Proc. R Soc. Lond. Ser. B-Biol. Sci. 270(1514), 545–554 (2003).
  • Rathod PK, McErlean T, Lee PC. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 94(17), 9389–9393 (1997).
  • Fairlamb AH. Metabolic pathway analysis in trypanosomes and malaria parasites. Philos. Trans. R Soc. Lond. Ser. B-Biol. Sci. 357(1417), 101–107 (2002).
  • Le Roch KG, Johnson JR, Florens L et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 14(11), 2308–2318 (2004).
  • Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol. 6(3), R26 (2005).
  • Hiller NL, Bhattacharjee S, van Ooij C et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703), 1934–1937 (2004).
  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306(5703), 1930–1933 (2004).
  • Scholl PF, Kongkasuriyachai D, Demirev PA et al. Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. Am. J. Tropical Med. Hygiene 71(5), 546–551 (2004).
  • Marks F, Meyer CG, Sievertsen J et al. Genotyping of Plasmodium falciparum pyrimethamine resistance by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Antimicrob. Agents Chemother. 48(2), 466–472 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.