320
Views
67
CrossRef citations to date
0
Altmetric
Review

Protein turnover on the scale of the proteome

&
Pages 97-110 | Published online: 09 Jan 2014

References

  • Chen G, Gharib TG, Huang CC et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell. Proteomics 1, 304–313 (2002).
  • Griffin TJ, Gygi SP, Ideker T et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).
  • Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81(7), 753–767, (2003).
  • Mehra A, Lee KH, Hatzimanikatis V. Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol. Bioeng. 84(7) 822–833 (2003).
  • Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, Lee KH. Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol. Bioeng. 84(7), 834–841 (2003).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518), 929–934 (2001).
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4), 533–537 (1997).
  • Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modelling mammalian biocomplexity. Nature Biotechnol. 22, 1268–1274 (2004).
  • Kitano H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
  • Johnson HA, Baldwin RL, France J, Calvert CC. Recycling, channelling and heterogeneous protein turnover estimation using a model of whole-body protein turnover based on leucine kinetics in rodents. J. Nutr. 129, 740–750 (1999).
  • Johnson HA, Baldwin RL, France J, Calvert CC. A model of whole-body protein turnover based on leucine kinetics in rodents. J. Nutr. 129, 728–739 (1999).
  • Garibotto G. Muscle amino acid metabolism and the control of muscle protein turnover in patients with chronic renal failure. Nutrition 15, 145–155 (1999).
  • Volpi E, Jeschke MG, Herndon DN, Wolfe RR. Measurement of skin protein breakdown in a rat model. Am. J. Physiol. Endocrinol. Metab. 279, E900–E906 (2000).
  • Gahl MJ, Benevenga NJ, Crenshaw TD. Rates of lysine catabolism are inversely related to rates of protein synthesis when measured concurrently in adult female rats induced to grow at different rates. J. Nutr. 128, 1503–1511 (1998).
  • Ryazanov AG, Nefsky BS. Protein turnover plays a key role in aging. Mech. Ageing Dev. 123, 207–213 (2002).
  • Smith K, Downie S, Barua JM, Watt PW, Scrimgeour CM, Rennie MJ. Effect of a flooding dose of leucine in stimulating incorporation of constantly infused valine into albumin. Am. J. Physiol. 266, E640–E644 (1994).
  • Zhang X-J, Chinkes DL, Wu Z, Martini WZ, Wolfe RR. Fractional synthesis rates of DNA and protein in rabbit skin are not correlated. J. Nutr. 134, 2401–2406 (2004).
  • Caso G, Ford GC, Nair KS, Garlick PJ, McNurlan MA. Aminoacyl-tRNA enrichment after a flood of labeled phenylalanine: insulin effect on muscle protein synthesis. Am. J. Physiol. Endocrinol. Metab. 282, E1029–E1038 (2002).
  • Papageorgopoulos C, Caldwell K, Shackleton C, Schweingrubber H, Hellerstein MK. Measuring protein synthesis by mass isotopomer distribution analysis (MIDA). Anal. Biochem. 267, 1–16 (1999).
  • Davis TA, Fiorotto ML, Nguyen HV, Burrin DG. Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine. Am. J. Physiol. Endocrinol. Metab. 277, E103–E109 (1999).
  • Marshall S, Okuyama R, Rumberger JM. Turnover and characterization of UDP-N-acetylglucosaminyl transferase in a stably transfected HeLa cell line. Biochem. Biophys. Res. Commun. 332(1) 263–270 (2005).
  • Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M. ‘Early’ protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labelling and two-dimensional gel electrophoresis. Electrophoresis 21(13) 2660–2669 (2000).
  • Vasseur C, Labadie J, Hebraud M. Differential protein expression by Pseudomonas fragi submitted to various stresses. Electrophoresis 20(11) 2204–2213 (1999).
  • Afify EA. Turnover of mu-opioid receptors in neuroblastoma cells. Brain Res. Mol. Brain Res. (1–2), 83–87 (2002).
  • Sangerman J, Goodman SR. Measurement of the synthesis, turnover, and assembly of α- and β-erythroid and nonerythroid spectrins in cultured rat hippocampal neurons. Brain Res. Brain Res. Protoc. 6(3) 141–147 (2001).
  • Hara H, Shiota H. Differential increases in syntheses of newly identified trypsinogen 2 isoforms by dietary protein in rat pancreas. Exp. Biol. Med. (Maywood) 229(8), 772–780 (2004).
  • Jones BR, Li W, Cao J, Hoffman TA, Gerk PM, Vore M. The role of protein synthesis and degradation in the post-transcriptional regulation of rat multi-drug resistance-associated protein 2 (Mrp2, Abcc2). Mol. Pharmacol. 68(3), 701–710 (2005).
  • Choi KL, Wang Y, Tse CA, Lam KS, Cooper GJ, Xu A. Proteomic analysis of adipocyte differentiation: evidence that α2 macroglobulin is involved in the adipose conversion of 3T3 L1 preadipocytes. Proteomics 4(6), 1840–1848 (2004).
  • Iresjo BM, Svanberg E, Lundholm K. Re-evaluation of amino acid stimulation of protein synthesis in murine- and human-derived skeletal muscle cells assessed by independent techniques. Am. J. Physiol. Endocrinol. Metab. 288(5), E1028–E1037 (2005).
  • Hermansson M, Sawaji Y, Bolton M et al. Proteomic analysis of articular cartilage shows increased Type II collagen synthesis in osteoarthritis and expression of inhibin β A (activin A), a regulatory molecule for chondrocytes. J. Biol. Chem. 279(42), 43514–43521 (2004).
  • Zhou S, Bailey MJ, Dunn MJ, Preedy VR, Emery PW. A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics 5(11), 2739–2747 (2005).
  • Marko NF, Dieffenbach PB, Yan, G et al. Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal β vs. external γ radiation. FASEB J. 17(11), 1470–1486 (2003).
  • Guan X, Bequette BJ, Calder G, Ku PK, Ames KN, Trottier NL. Amino acid availability affects amino acid flux and protein metabolism in the porcine mammary gland. J. Nutr. 132, 1224–1234 (2002).
  • Caso G, Ford GC, Nair KS, Vosswinkel JA, Garlick PJ, McNurlan MA. Increased concentration of tracee affects estimates of muscle protein synthesis. Am. J. Physiol. Endocrinol. Metab. 280, E937–E946 (2001).
  • Mente E, Coutteau P, Houlihan D, Davidson I, Sorgeloos P. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source. J. Exp. Biol. 205, 3107–3122 (2002).
  • Sans MD, Lee SH, D’Alecy LG, Williams JA. Feeding activates protein synthesis in mouse pancreas at the translational level without increase in mRNA. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G667–G675 (2004).
  • Bregendahl K, Liu L, Cant, JP et al. Fractional protein synthesis rates measured by an intraperitoneal injection of a flooding dose of L-[ring-2H5] phenylalanine in pigs. J. Nutr. 134, 2722–2728 (2004).
  • Zhang XJ, Chinkes DL, Wolfe RR. Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am. J. Physiol. Endocrinol. Metab. 283, E753–E764 (2002).
  • Grotkjaer T, Akesson M, Christensen B, Gombert AK, Nielsen J. Impact of transamination reactions and protein turnover on labelling dynamics in 13C-labelling experiments. Biotechnol. Bioeng. 86, 209–216 (2004).
  • Walrand S, Guillet C, Gachon P et al. Protein synthesis rates of human PBMC and PMN can be determined simultaneously in vivo by using small blood samples. Am. J. Physiol. Cell Physiol. 286, C1474–C1478 (2004).
  • Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H] phenylalanine. Biochem. J. 192, 719–723 (1980).
  • McNurlan MA, Essen P, Heys SD, Buchan V, Garlick PJ, Wernerman J. Measurement of protein synthesis in human skeletal muscle: further investigation of the flooding technique. Clin. Sci. (Lond.) 81, 557–564 (1991).
  • Waterlow JC. Whole-body protein turnover in humans – past, present, and future. Annu. Rev. Nutr. 15, 57–92 (1995).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17(10) 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3(12), 1154–1169 (2004).
  • Kirkpatrick DS, Gerber, SA, Gygi S P. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3), 265–73 (2005).
  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nature Methods 2(8) 587–589 (2005).
  • Gerner C, Vejda S, Gelbmann D et al. Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol. Cell. Proteomics 1, 528–537 (2002).
  • Rennie MJ. An introduction to the use of tracers in nutrition and metabolism. Proc. Nutr. Soc. 58(4) 935–944 (1999).
  • Beynon RJ, Pratt JM. Metabolic labelling of proteins for proteomics. Mol. Cell. Proteomics 4(7), 857–872 (2005).
  • Hellerstein MK, Kletke C, Kaempfer S, Wu K, Shackleton CH. Use of mass isotopomer distributions in secreted lipids to sample lipogenic acetyl-CoA pool in vivo in humans. Am. J. Physiol. 261, E479–E486 (1991).
  • Hellerstein MK. Relationship between precursor enrichment and ratio of excess M2/excess M1 isotopomer frequencies in a secreted polymer. J. Biol. Chem. 266, 10920–10924 (1991).
  • Hellerstein MK, Neese RA. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am. J. Physiol. 263, E988–E1001 (1992).
  • Hellerstein MK, Neese RA. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am. J. Physiol. 276, E1146–E1170 (1999).
  • Doherty MK, McClean L, Edwards I et al. Protein turnover in chicken skeletal muscle: understanding protein dynamics on a proteome-wide scale. Br. Poult. Sci. 45(Suppl.), 1, S27–S28 (2004).
  • Bouwman F, Renes J, Mariman E. A combination of protein profiling and isotopomer analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometry reveals an active metabolism of the extracellular matrix of 3T3-L1 adipocytes. Proteomics 4, 3855–3863 (2004).
  • Andersen JS, Lam YW, Leung AK et al. Nucleolar proteome dynamics. Nature 433(7021), 77–83 (2005).
  • Pratt JM, Petty J, Riba-Garcia I et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002).
  • Pratt JM, Robertson DH, Gaskell, SJ et al. Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics 2(2), 157–163 (2002).
  • Cargile BJ, Bundy JL, Grunden AM, Stephenson JL Jr. Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover. Anal. Chem. 76, 86–97 (2004).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).
  • Ong SE, Foster LJ, Mann M. Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–130 (2003).
  • MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR III. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921 (2003).
  • Papageorgopoulos C, Caldwell K, Schweingrubber H, Neese RA, Shackleton CH, Hellerstein M. Measuring synthesis rates of muscle creatine kinase and myosin with stable isotopes and mass spectrometry. Anal. Biochem. 309, 1–10 (2002).
  • Doherty MK, Whitehead C, McCormack H, Gaskell SJ, Beynon RJ. Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5, 522–533 (2005).
  • Doherty MK, McLean L, Hayter JR et al., The proteome of chicken skeletal muscle: changes in soluble protein expression during growth in a layer strain. Proteomics 4(7), 2082–2093 (2004).
  • Jones SJ, Aberle ED, Judge MD. Skeletal muscle protein turnover in broiler and layer chicks. J. Anim. Sci. 62, 1576–1583 (1986).
  • Vogt JA, Hunzinger C, Schroer K et al. Determination of fractional synthesis rates of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal. Chem. 77(7), 2034–2042 (2005).
  • McDonald L, Robertson DHL, Hurst JL, Beynon RJ. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nature Methods 2(12), 955–957 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.