284
Views
45
CrossRef citations to date
0
Altmetric
Review

Proteomics and heart disease: identifying biomarkers of clinical utility

&
Pages 237-249 | Published online: 09 Jan 2014

References

  • Maisel AS, Bhalla V, Braunwald E. Cardiac biomarkers: a contemporary status report. Nature Clin. Pract. Cardiovasc. Med.3(1), 24–34 (2006).
  • Vivanco F, Martin-Ventura JL, Duran MC et al. Quest for novel cardiovascular biomarkers by proteomic analysis. J. Proteome Res.4(4), 1181–1191 (2005).
  • Babuin L, Jaffe AS. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ173(10), 1191–1202 (2005).
  • Wu AH. Markers for early detection of cardiac diseases. Scand. J. Clin. Lab. Invest. Suppl. 240, 112–121 (2005).
  • Apple FS, Wu AH, Mair J et al. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin. Chem.51(5), 810–824 (2005).
  • Kragelund C, Omland T. B-type natriuretic peptide (BNP) or N-terminal-proBNP for the diagnosis of heart failure: which peptide is the better choice? Scand. J. Clin. Lab. Invest.65(8), 629–632 (2005).
  • Jarai R, Wojta J, Huber K. Circulating B-type natriuretic peptides in patients with acute coronary syndromes. Pathophysiological, prognostical and therapeutical considerations. Thromb. Haemost.94(5), 926–932 (2005).
  • Lee DS, Vasan RS. Novel markers for heart failure diagnosis and prognosis. Curr. Opin. Cardiol.20(3), 201–210 (2005).
  • Lipinski MJ, Fuster V, Fisher EA, Fayad ZA. Technology insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nature Clin. Pract. Cardiovasc. Med.1(1), 48–55 (2004).
  • Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, Allard L, Hochstrasser DF, Sanchez JC. Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol. Cell. Proteomics3(1), 66–72 (2004).
  • Stein LD. Human genome: end of the beginning. Nature431(7011), 915–916 (2004).
  • Haab BB, Geierstanger BH, Michailidis G et al. Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics5(13), 3278–3291 (2005).
  • Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J. Physiol.563(Pt 1), 23–60 (2005).
  • Omenn GS. Exploring the human plasma proteome. Proteomics5(13), 3223, 3225 (2005).
  • Muthusamy B, Hanumanthu G, Suresh S et al. Plasma Proteome Database as a resource for proteomics research. Proteomics5(13), 3531–3536 (2005).
  • Berhane BT, Zong C, Liem DA et al. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase. Proteomics5(13), 3520–3530 (2005).
  • Pang S, Smith J, Onley D, Reeve J, Walker M, Foy C. A comparability study of the emerging protein array platforms with established ELISA procedures. J. Immunol. Methods302(1–2), 1–12 (2005).
  • Haab BB. Multiplexed protein analysis using antibody microarrays and label-based detection. Methods Mol. Med.114, 183–194 (2005).
  • Schweitzer B, Roberts S, Grimwade B et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnol.20(4), 359–365 (2002).
  • Khan SS, Smith MS, Reda D, Suffredini AF, McCoy JP Jr. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin. Cytom.61(1), 35–39 (2004).
  • duPont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL. Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J. Reprod. Immunol.66(2), 175–191 (2005).
  • Perlee L, Christiansen J, Dondero R et al. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci.2(1), 9 (2004).
  • Barry R, Soloviev M. Quantitative protein profiling using antibody arrays. Proteomics4(12), 3717–3726 (2004).
  • Graham DR, Elliott ST, Van Eyk JE. Broad-based proteomic strategies: a practical guide to proteomics and functional screening. J. Physiol.563(Pt 1), 1–9 (2005).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250(10), 4007–4021 (1975).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik26(3), 231–243 (1975).
  • Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics4(12), 3665–3685 (2004).
  • Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc. Natl Acad. Sci. USA74(12), 5421–5425 (1977).
  • Hughes GJ, Frutiger S, Paquet N et al. Plasma protein map: an update by microsequencing. Electrophoresis13(9–10), 707–714 (1992).
  • Pieper R, Gatlin CL, Makusky AJ et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics3(7), 1345–1364 (2003).
  • Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A et al. Proteomic analysis of plasma from patients during an acute coronary syndrome. J. Am. Coll. Cardiol.44(8), 1578–1583 (2004).
  • Arrell DK, Neverova I, Fraser H, Marban E, Van Eyk JE. Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ. Res.89(6), 480–487 (2001).
  • Neverova I, Van Eyk JE. Role of chromatographic techniques in proteomic analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.815(1–2), 51–63 (2005).
  • Link AJ, Eng J, Schieltz DM et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol.17(7), 676–682 (1999).
  • Adkins JN, Varnum SM, Auberry KJ et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics1(12), 947–955 (2002).
  • Barnea E, Sorkin R, Ziv T, Beer I, Admon A. Evaluation of prefractionation methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics5(13), 3367–3375 (2005).
  • Leitner A, Lindner W. Current chemical tagging strategies for proteome analysis by mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.813(1–2), 1–26 (2004).
  • Leung KY, Lescuyer P, Campbell J et al. A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma. Proteomics5(12), 3040–3044 (2005).
  • Kachman MT, Wang H, Schwartz DR, Cho KR, Lubman DM. A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers. Anal. Chem.74(8), 1779–1791 (2002).
  • Sheng S, Chen D, Van Eyk JE. Multi-dimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phased of the human serum proteome: optimization and protein database. Mol. Cell. Proteomics5(1), 26–34 (2006).
  • Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom. Rev.23(1), 34–44 (2004).
  • Zhang Z, Bast RC Jr, Yu Y et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res.64(16), 5882–5890 (2004).
  • Xiao Z, Prieto D, Conrads TP, Veenstra TD, Issaq HJ. Proteomic patterns: their potential for disease diagnosis. Mol. Cell. Endocrinol.230(1–2), 95–106 (2005).
  • Caputo E, Moharram R, Martin BM. Methods for on-chip protein analysis. Anal. Biochem.321(1), 116–124 (2003).
  • Li J, Orlandi R, White CN et al. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin. Chem.51(12), 2229–2235 (2005).
  • Rai AJ, Stemmer PM, Zhang Z et al. Analysis of Human Proteome Organization Plasma Proteome Project (HUPO PPP) reference specimens using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers. Proteomics5(13), 3467–3474 (2005).
  • Schulte I, Tammen H, Selle H, Schulz-Knappe P. Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol. Diagn.5(2), 145–157 (2005).
  • Allard L, Lescuyer P, Burgess J et al. ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics4(8), 2242–2251 (2004).
  • Florian-Kujawski M, Hussain W, Chyna B et al. Biomarker profiling of plasma from acute coronary syndrome patients. Application of ProteinChip Array analysis. Int. Angiol.23(3), 246–254 (2004).
  • Marshall J, Kupchak P, Zhu W et al. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J. Proteome Res.2(4), 361–372 (2003).
  • Rai AJ, Gelfand CA, Haywood BC et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics5(13), 3262–3277 (2005).
  • Villanueva J, Philip J, Chaparro CA et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J. Proteome Res.4(4), 1060–1072 (2005).
  • West-Nielsen M, Hogdall EV, Marchiori E, Hogdall CK, Schou C, Heegaard NH. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem.77(16), 5114–5123 (2005).
  • Tammen H, Schulte I, Hess R et al. Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics5(13), 3414–3422 (2005).
  • Colantonio DA, Dunkinson C, Bovenkamp DE, Van Eyk JE. Effective removal of albumin from serum. Proteomics5(15), 3831–3835 (2005).
  • Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC. Differences among techniques for high-abundant protein depletion. Proteomics5(13), 3304–3313 (2005).
  • Huang L, Harvie G, Feitelson JS et al. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics5(13), 3314–3328 (2005).
  • Fu Q, Garnham CP, Elliott ST, Bovenkamp DE, Van Eyk JE. A robust, streamlined, and reproducible method for proteomic analysis of serum by delipidation, albumin and IgG depletion, and two-dimensional gel electrophoresis. Proteomics5(10), 2656–2664 (2005).
  • Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia – a preliminary report. J. Emerg. Med.19(4), 311–315 (2000).
  • Bar-Or D, Curtis G, Rao N, Bampos N, Lau E. Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur. J. Biochem.268(1), 42–47 (2001).
  • Sinha MK, Roy D, Gaze DC, Collinson PO, Kaski JC. Role of “ischemia modified albumin”, a new biochemical marker of myocardial ischaemia, in the early diagnosis of acute coronary syndromes. Emerg. Med. J.21(1), 29–34 (2004).
  • Sacchetti A. “Ischemia modified albumin”: a new biochemical marker of myocardial ischaemia. Emerg. Med. J.21(1), 3–4 (2004).
  • Ping P. Identification of novel signaling complexes by functional proteomics. Circ. Res.93(7), 595–603 (2003).
  • Lewis TS, Hunt JB, Aveline LD et al. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell.6(6), 1343–1354 (2000).
  • Wu AH, Feng YJ, Moore R et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin. Chem.44(6 Pt 1), 1198–1208 (1998).
  • Labugger R, Organ L, Collier C, Atar D, Van Eyk JE. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation102(11), 1221–1216 (2000).
  • Taira Z, Terada H. Specific and non-specific ligand binding to serum albumin. Biochem. Pharmacol.34(11), 1999–2005 (1985).
  • Aureli L, Cruciani G, Cesta MC, Anacardio R, De Simone L, Moriconi A. Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach. J. Med. Chem.48(7), 2469–2479 (2005).
  • Zhou M, Lucas DA, Chan KC et al. An investigation into the human serum “interactome”. Electrophoresis25(9), 1289–1298 (2004).
  • Taur Y, Frishman WH. The cardiac ryanodine receptor (RyR2) and its role in heart disease. Cardiol. Rev.13(3), 142–146 (2005).
  • Kalafatis M, Egan JO, van ’t Veer C, Cawthern KM, Mann KG. The regulation of clotting factors. Crit. Rev. Eukaryot. Gene Expr.7(3), 241–280 (1997).
  • Marhaug G, Sletten K, Husby G. Characterization of amyloid related protein SAA complexed with serum lipoproteins (apoSAA). Clin. Exp. Immunol.50(2), 382–389 (1982).
  • Macphee CH, Nelson JJ, Zalewski A. Lipoprotein-associated phospholipase A2 as a target of therapy. Curr. Opin. Lipidol.16(4), 442–446 (2005).
  • Ogasawara K, Mashiba S, Wada Y et al. A serum amyloid A and LDL complex as a new prognostic marker in stable coronary artery disease. Atherosclerosis174(2), 349–356 (2004).
  • Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics2(10), 1096–1103 (2003).
  • Tammen H, Mohring T, Kellmann M, Pich A, Kreipe HH, Hess R. Mass spectrometric phenotyping of Val34Leu polymorphism of blood coagulation factor XIII by differential peptide display. Clin. Chem.50(3), 545–551 (2004).
  • Schulz-Knappe P, Zucht HD, Heine G, Jurgens M, Hess R, Schrader M. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen.4(2), 207–217 (2001).
  • Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnol.21(6), 660–666 (2003).
  • Zhang H, Yi EC, Li XJ et al. High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteomics4(2), 144–155 (2005).
  • Yang Z, Hancock WS, Chew TR, Bonilla L. A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS. Proteomics5(13), 3353–3366 (2005).
  • Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA293(1), 90–95 (2005).
  • Vishnevetsky D, Kiyanista VA, Gandhi PJ. CD40 ligand: a novel target in the fight against cardiovascular disease. Ann. Pharmacother.38(9), 1500–1508 (2004).

Websites

  • University of Michigan: Human Proteome Organization – Plasma Proteome Project www.bioinformatics.med.umich.edu/hupo/ppp
  • Plasma Proteome Database www.plasmaproteomedatabase.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.