114
Views
37
CrossRef citations to date
0
Altmetric
Review

Protein primary structure using orthogonal fragmentation techniques in Fourier transform mass spectrometry

Pages 251-261 | Published online: 09 Jan 2014

References

  • Link AJ, Eng J, Schieltz DM et al. Direct analysis of protein complexes using mass spectrometry.Nature Biotechnol.17, 676–682 (1999).
  • Pandey A, Mann M. Proteomics to study genes and genomes.Nature405, 837–846 (2000).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics.Nature422, 198–207 (2003).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data.Electrophoresis20, 3551–3567 (1999).
  • Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database.J. Am. Soc. Mass Spectrom.5,976–989 (1994).
  • Bruce J, Anderson GA, Wen J, Harkewicz R, Smith RD. High mass measurement accuracy for 100% sequence coverage of enzymatically digested bovine serum albumin from an ESI-FTICR mass spectrum.Anal. Chem.71, 2595–2599 (1999).
  • Palmblad M, Wetterhall M, Markides K, Håkansson P, Bergquist J. Analysis of enzymatically digested proteins and protein mixtures using a 9.4 Tesla Fourier transform.Rapid Commun. Mass Spectrom.12, 1029–1034 (2000).
  • Olsen JV, Mann M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation.Proc. Natl Acad. Sci. USA101, 13417–13422 (2004).
  • Gibson BW, Biemann K. Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences.Proc. Natl Acad. Sci. USA81, 1956–1960 (1984).
  • Zubarev RA, Håkansson P, Sundqvist BUR. Accurate monoisotopic mass measurements of peptides: possibilities and limitations of high resolution time-of-flight particle desorption mass spectrometry.Rapid Commun. Mass Spectrom.10, 1386–1392 (1996).
  • Spengler B. De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry.J. Am. Soc. Mass Spectrom.15, 703–714 (2004).
  • Conrads TP, Anderson GA, Veenstra TD, Paša-Tolic L, Smith RD. Utility of accurate mass tags for proteome-wide protein identification.Anal. Chem.72, 3349–3354 (2000).
  • Smith RD, Anderson GA, Lipton MS et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements.Proteomics2, 513–523 (2002).
  • Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A. The need for guidelines in publication of peptide and protein identification data.Mol. Cell. Proteomics3, 531–522 (2004).
  • Rush J, Moritz A, Lee KA et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nature Biotechnol.23, 94–101 (2004).
  • Bern M, Goldberg D, McDonald WH, Yates JR III. Automatic quality assessment of peptide tandem mass spectra.Bioinformatics20, 49–54 (2004).
  • Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags.Anal. Chem.66, 4390–4399 (1994).
  • Dongre AR, Somogyi A, Wysocki VH. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides.J. Mass Spectrom.31, 339–350 (1996).
  • Nielsen ML, Savitski MM, Zubarev RA. Improving protein identification using complementary fragmentation techniques in Fourier transform mass spectrometry.Mol. Cell. Proteomics4, 835–845 (2005).
  • Rodriquez CF, Cunje A, Shoeib T, Chu IK, Hopkinson AC, Siu KWM. Proton migration and tautomerism in protonated triglycine.J. Am. Chem. Soc.123, 3006–3012 (2001).
  • Yu W, Vath JE, Huberty MC, Martin SA. Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser-desorption time-of-flight mass spectrometry.Anal. Chem.65, 3015–3023 (1993).
  • Huang Y, Triscari JM, Wysocki VH et al. Dissociation behaviors of doubly-charged tryptic peptides: correlation of gas-phase cleavage abundance with ramachandran plots.J. Am. Chem. Soc.,126, 3034–3035 (2004).
  • Huang Y, Triscari JM, Tseng GC et al. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.Anal. Chem.77, 5800–5813 (2005).
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.Anal. Chem.74, 5383–5392 (2002).
  • Savitski MM, Nielsen ML, Zubarev RA. New database-independent, sequence-tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below-threshold data, singles out modified peptides and assesses the quality of MS/MS techniques.Mol. Cell. Proteomics4, 1180–1188 (2005).
  • Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags.Anal. Chem.66, 4390–4399 (1994).
  • Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. Proteomics-grade de novo sequencing approach.J. Proteome Res.4, 2348–2354 (2005).
  • Budnik BA, Nielsen ML, Olsen JV et al. Can relative cleavage frequencies in peptides provide additional sequence information?Int. J. Mass Spectrom.219, 283–294 (2002).
  • Tang XJ, Thibault P, Boyd RK. Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal. Chem.65, 2824–2834 (1993).
  • Zhang Z, McElvain JS. De novo peptide sequencing by two-dimensional fragment correlation mass spectrometry.Anal. Chem.72, 2337–2350 (2000).
  • Olsen JV, Mann M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation.Proc. Natl Acad. Sci. USA101, 13417–13422 (2004).
  • Thompson MS, Cui W, Reilly JP. Fragmentation of singly charged peptide ions by photodissociation at λ=157 nm.Angew. Chem. Int. Ed.43, 4791–4794 (2004).
  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A non-ergodic process.J. Am. Chem. Soc.120, 3265–3266 (1998).
  • Zubarev RA, Kruger NA, Fridriksson EK et al. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity.J. Am. Chem. Soc.121, 2857–2862 (1999).
  • Zubarev RA. Electron capture dissociation tandem mass spectrometry.Curr. Opin. Biotechnol.15, 12–16 (2004).
  • Baba T, Hashimoto Y, Hasegawa H, Hirabayashi A, Waki I. Electron capture dissociation in a radio frequency ion trap. Anal. Chem.76, 4263–4266 (2004).
  • Silivra OA, Kjeldsen F, Ivonin IA, Zubarev RA. Electron capture dissociation in a quadrupole ion trap: first results.J. Am. Soc. Mass Spectrom.16, 22–27 (2005).
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry.Proc. Natl Acad. Sci. USA101, 9528–9533 (2004).
  • Horn DM, Zubarev RA, McLafferty FW. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl Acad. Sci USA97, 10313–10317 (2000).
  • Grossmann J, Roos FF, Cieliebak M et al. Audens: a tool for automated peptide de novo sequencing. J. Proteome Res.10, 1768–1774 (2005).
  • Sze SK, Ge Y, Oh HB, McLafferty FW. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry. Anal. Chem.75, 1599–1603 (2003).
  • Horn DM, Ge Y, McLafferty FW. Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem.72, 4778–4784 (2000).
  • Horn DM, Zubarev RA, McLafferty FW. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules.J. Am. Soc. Mass Spectrom.11, 320–332 (2000).
  • Taylor GK, Kim YB, Forbes AJ, Meng FY, McCarthy R, Kelleher NL. Web and database software for identification of intact proteins using “top down” mass spectrometry. Anal. Chem.75, 4081–4086 (2003).
  • Kjeldsen F, Zubarev RA. Secondary losses via γ-lactam formation in hot electron capture dissociation: a missing link to complete de novo sequencing of proteins? J. Am. Chem. Soc.125, 6628–6629 (2003).
  • Cooper HJ, Hakansson K, Marshall AG. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005).
  • Kjeldsen F, Haselmann KF, Budnik BA, Sørensen ES, Zubarev RA. Complete characterisation of post-translational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal. Chem.75, 2355–2361 (2003).
  • Kjeldsen F, Sørensen E, Zubarev RA. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.75, 1267–1274 (2003).
  • Kjeldsen F, Budnik BA, Haselmann KF, Jensen F, Zubarev RA. Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem. Phys. Lett.356, 201–206 (2002).
  • Artigues A, Birkett A, Schirch V. Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxymethyltransferase. J. Biol. Chem.265, 4853–4858 (1990).
  • Cournoyer JJ, Pittman JJ, Ivleva VB et al. Deamidation: differentiation of aspartyl from isoaspartyl products in peptides. Prot. Sci.14, 452–563 (2005).
  • Adams C, Budnik BA, Haselmann KF, Kjeldsen F, Zubarev RA. Electron capture dissociation distinguishes a single D-amino acid in a protein and probes the tertiary structure.J. Am. Soc. Mass Spectrom.15, 1087–1098 (2004).
  • Adams C, Zubarev RA. Distinguishing and quantification of peptides and proteins containing D-amino acids by tandem mass spectrometry. Anal. Chem.77, 4571–4580 (2005).
  • Budnik BA, Haselmann KF, Zubarev RA. Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon.Chem. Phys. Lett.342, 299–302 (2001).
  • Kjeldsen F, Silivra OA, Ivonin IA, Haselmann KF, Gorshkov M, Zubarev RA. Cα-C backbone fragmentation dominates in electron detachment dissociation of gas-phase poly-peptide anions. Chemistry11, 1803–1812 (2005).
  • Johnson JR, Meng FY, Forbes AJ, Cargile BJ, Kelleher NL. Fourier-transform mass spectrometry for automated fragmentation and identification of 5–20 kDa proteins in mixtures.Electrophoresis23, 3217–3223 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.