171
Views
29
CrossRef citations to date
0
Altmetric
Review

Proteomic applications of protein quantification by isotope-dilution mass spectrometry

&
Pages 597-610 | Published online: 09 Jan 2014

References

  • André P, de Leenheer LMT. Applications of isotope-dilution mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spec. Rev.11(4), 249–307 (1992).
  • Kippen AD, Cerini F, Vadas L et al. Development of an isotope-dilution assay for precise determination of insulin, C-peptide, and proinsulin levels in non-diabetic and type II diabetic individuals with comparison to immunoassay. J. Biol. Chem.272(19), 12513–12522 (1997).
  • Barr JR, Maggio VL, Patterson DG Jr et al. Isotope-dilution mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin. Chem.42(10), 1676–1682 (1996).
  • Barnidge DR, Dratz EA, Martin T et al. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal. Chem.75(3), 445–451 (2003).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Barnidge DR, Goodmanson MK, Klee GG, Muddiman DC. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope-dilution mass spectrometry. J. Proteome Res.3(3), 644–652 (2004).
  • Bronstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev. Proteomics1(4), 503–512 (2004).
  • Mayya V, Rezaul K, Wu L, Fong MB, Han DK. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin dependent kinases. Mol. Cell Proteomics5(6), 1146–11577 (2006).
  • Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods35(3), 265–273 (2005).
  • Richardson CJ, Broenstrup M, Fingar DC et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr. Biol.14(17), 1540–1549 (2004).
  • Cutillas PR, Khwaja A, Graupera M et al. Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc. Natl Acad. Sci. USA103(24), 8959–8964 (2006).
  • Kirkpatrick DS, Hathaway NA, Hanna J et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol.8(7), 700–710 (2006).
  • Berger SL. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev.12(2), 142–148 (2002).
  • Ueberheide BM, Taverna SD, Allis CD, Shabanowitz J, Hunt DF. Breaking the histone code: analyzing the interdependence of acetylation and methylation on histone H3 using electron transfer dissociation (ETD). Presented at: 54th Annual ASMS Conference. Seattle, WA, USA, 28th May–1st June (2006).
  • Jenkins RE, Kitteringham NR, Hunter CL et al. Relative and absolute quantitative expression profiling of cytochrome P450 using isotope-coded affinity tags. Proteomics6(6), 1934–1947 (2006).
  • Alberts B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell92(3), 291–294 (1998).
  • Gingras AC, Aebersold R, Raught B. Advances in protein complex analysis using mass spectrometry. J. Physiol.563(Pt 1), 11–21 (2005).
  • Sobott F, Robinson CV. Protein complexes gain momentum. Curr. Opin. Struct. Biol.12(6), 729–734 (2002).
  • Hochleitner EO, Kastner B, Frohlich T et al. Protein stoichiometry of a multiprotein complex, the human spliceosomal U1 small nuclear ribonucleoprotein: absolute quantification using isotope-coded tags and mass spectrometry. J. Biol. Chem.280(4), 2536–2542 (2005).
  • Cheng D, Hoogenraad CC, Rush J et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell Proteomics5(6), 1158–1170 (2006).
  • Peng J, Kim MJ, Cheng D et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem.279(20), 21003–21011 (2004).
  • Shi Y. Caspase activation: revisiting the induced proximity model. Cell117(7), 855–858 (2004).
  • Rout MP, Aitchison JD, Suprapto A et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148(4), 635–651 (2000).
  • Kuhn E, Wu J, Karl J et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics4(4), 1175–1186 (2004).
  • Hwang SI, Thumar J, Lundgren DH et al. Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues. Oncogene (2006) (Epub ahead of print).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics1(11), 845–867 (2002).
  • Rogatsky E, Balent B, Goswami G et al. Sensitive quantitative analysis of C-peptide in human plasma by 2-dimensional liquid chromatography–mass spectrometry isotope-dilution assay. Clin. Chem.52(5), 872–879 (2006).
  • Fierens C, Stockl D, Baetens D, De Leenheer AP, Thienpont LM. Standardization of C-peptide measurements in urine by method comparison with isotope-dilution mass spectrometry. Clin. Chem.49(6 Pt 1), 992–994 (2003).
  • Hawkridge AM, Heublein DM, Bergen HR 3rd et al. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc. Natl Acad. Sci. USA102(48), 17442–17447 (2005).
  • Veenstra TD, Hood BL, Krizman DB et al. Development of a method for quantification of HER-2 in formalin-fixed paraffin embedded breast cancer tissue and serum. Presented at: 54th Annual ASMS Conference. Seattle, WA, USA, 28th May–1st June (2006).
  • Bagnato C, Thumar J, Mayya V et al. Proteomic analysis of human coronary atherosclerotic plaque: a feasibility study of direct tissue proteomics by liquid chromatography and tandem mass spectrometry. Mol. Cell Proteomics (2006) (Submitted).
  • Anderson NL. The roles of multiple proteomic platforms in a pipeline for new diagnostics. Mol. Cell Proteomics4(10), 1441–1444 (2005).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24(8), 971–983 (2006).
  • Pan S, Zhang H, Rush J et al. High throughput proteome screening for biomarker detection. Mol. Cell Proteomics4(2), 182–190 (2005).
  • Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol.6(7), 577–583 (2005).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteomics5(4), 573–588 (2006).
  • Anderson NL, Anderson NG, Haines LR et al. Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by antipeptide antibodies (SISCAPA). J. Proteome Res.3(2), 235–244 (2004).
  • Wu L, Han DK. Strategies to overcome the dynamic range problem in mass spectrometry based proteomics. Expert Rev. Proteomics Submitted (2006) (In Press).
  • Aebersold R. A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom.14(7), 685–695 (2003).
  • Aebersold R. Molecular systems biology: a new journal for a new biology? 1(1), msb4100009-E4100001-msb4100009-E4100002 (2005).
  • Janes KA, Gaudet S, Albeck JG et al. The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell124(6), 1225–1239 (2006).
  • Janes KA, Albeck JG, Gaudet S et al. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science310(5754), 1646–1653 (2005).
  • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science308(5721), 523–529 (2005).
  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods2(8), 587–589 (2005).
  • Pipkorn R, Boenke C, Gehrke M, Hoffmann R. High-throughput peptide synthesis and peptide purification strategy at the low micromole-scale using the 96-well format. J. Pept. Res.59(3), 105–114 (2002).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312(5771), 212–217 (2006).
  • Domon B, Zheng-Stahl J, Aebersold R. Novel strategy for rapid screening and quantification of biomarkers in serum. Presented at: 54th Annual ASMS Conference. Seattle, WA, USA, 28th May–1st June (2006).
  • Unwin RD, Griffiths JR, Leverentz MK et al. Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol. Cell Proteomics4(8), 1134–1144 (2005).
  • Lam H, Deutsch E, Eddes J et al. SpectraST: an open-source MS/MS spectra-matching library search tool for targeted proteomics. Presented at: 54th Annual ASMS Conference. Seattle, WA, USA, 28th May–1st June (2006).
  • Stein S, Kilpatrick L, Mautner M, Neta P, Roth J. Building and using reference libraries of peptide mass spectra. Presented at: 53rd Annual ASMS Conference, San Antonio, TX, USA, 5th–9th June (2005).
  • Cohen P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci.25(12), 596–601 (2000).
  • Roach PJ. Multisite and hierarchal protein phosphorylation. J. Biol. Chem.266(22), 14139–14142 (1991).
  • Nash P, Tang X, Orlicky S et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature414(6863), 514–521 (2001).
  • Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene18(49), 6867–6874 (1999).
  • Welcker M, Singer J, Loeb KR et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol.Cell12(2), 381–392 (2003).
  • Holmberg CI, Tran SE, Eriksson JE, Sistonen L. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem. Sci.27(12), 619–627 (2002).
  • Diviani D, Lattion AL, Cotecchia S. Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase- and protein kinase C-mediated desensitization of the α1B-adrenergic receptor. J. Biol. Chem.272(45), 28712–28719 (1997).
  • Guo J, Wu Y, Zhang W et al. Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated δ-opioid receptor phosphorylation. Mol. Pharmacol.58(5), 1050–1056 (2000).
  • Dougherty MK, Muller J, Ritt DA et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell17(2), 215–224 (2005).
  • Gietzen KF, Virshup DM. Identification of inhibitory autophosphorylation sites in casein kinase I epsilon. J. Biol. Chem.274(45), 32063–32070 (1999).
  • Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene24(10), 1653–1662 (2005).
  • Berger SL. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev.12(2), 142–148 (2002).
  • Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol.Cell2(2), 233–239 (1998).
  • Bulavin DV, Higashimoto Y, Demidenko ZN et al. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol.5(6), 545–551 (2003).
  • Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell Biol.13(12), 7418–7428 (1993).
  • Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell111(3), 381–392 (2002).
  • Kanno T, Kanno Y, Siegel RM et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell13(1), 33–43 (2004).
  • Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J.9(10), 919–925 (1995).
  • Zhang X, Ibrahimi OA, Olsen SK et al. Receptor specificity of the fibroblast growth factor family, part II. J. Biol. Chem.281(23), 15694–15700 (2006).
  • Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol.2(3), REVIEWS3005 (2001).
  • Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet.20(11), 563–569 (2004).
  • Boise LH, Gonzalez-Garcia M, Postema CE et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell74(4), 597–608 (1993).
  • Minn AJ, Boise LH, Thompson CB. Bcl-x(S) anatagonizes the protective effects of Bcl-x(L). J. Biol.Chem.271(11), 6306–6312 (1996).
  • McKenney DW, Onodera H, Gorman L, Mimura T, Rothstein DM. Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J. Biol. Chem.270(42), 24949–24954 (1995).
  • Xu Z, Weiss A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol.3(8), 764–771 (2002).
  • Onodera H, Motto DG, Koretzky GA, Rothstein DM. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J. Biol. Chem.271(36), 22225–22230 (1996).
  • Chang DW, Xing Z, Pan Y et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo. J.21(14), 3704–3714 (2002).
  • Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell Biol.21(24), 8247–8254 (2001).
  • Micheau O, Thome M, Schneider P et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem.277(47), 45162–45171 (2002).
  • Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem.274(3), 1541–1548 (1999).
  • Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev.81(1), 21–50 (2001).
  • de Melker AA, Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays21(6), 499–509 (1999).
  • Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol.11(2), 255–260 (1999).
  • Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol.22(6), 328–336 (2001).
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13(12), 1501–1512 (1999).
  • Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol.3(6), 401–410 (2002).
  • Sasaki A, Yasukawa H, Suzuki A et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells4(6), 339–351 (1999).
  • Simpson L, Parsons R. PTEN: life as a tumor suppressor. Exp. Cell Res.264(1), 29–41 (2001).
  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell109(5), 611–623 (2002).
  • Adachi N, Kimura A, Horikoshi M. A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3. J. Biol. Chem.277(38), 35688–35695 (2002).
  • Yoshimura A, Ohkubo T, Kiguchi T et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Embo. J,14(12), 2816–2826 (1995).
  • Ferrell JE Jr. What do scaffold proteins really do? Sci. STKE2000(52), PE1 (2000).
  • Levchenko A, Bruck J, Sternberg PW. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA 97(11), 5818–5823 (2000).
  • Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol.1(1), E10 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.