166
Views
39
CrossRef citations to date
0
Altmetric
Review

Mass spectrometry-based immunoassays for the next phase of clinical applications

Pages 631-640 | Published online: 09 Jan 2014

References

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science246(4926), 64–71 (1989).
  • Tanaka K, Waki H, Ido Y et al. Protein and polymer analyses of up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.2, 151–153 (1988).
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem.60(20), 2299–2301 (1988).
  • Hutchens TW, Yip TT. New desorption strategies for the mass-spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom.7(7), 576–580 (1993).
  • Papac DI, Hoyes J, Tomer KB. Direct analysis of affinity-bound analytes by Maldi/TOF MS. Anal. Chem.66, 2609–2613 (1994).
  • Papac DI, Hoyes J, Tomer KB. Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci.3(9), 1485–1492 (1994).
  • Zhao YM, Chait BT. Protein epitope mapping by mass-spectrometry. Anal. Chem.66(21), 3723–3726 (1994).
  • Brockman AH, Orlando R. Probe-immobilized affinity chromatography/mass spectrometry. Anal. Chem.67(24), 4581–4585 (1995).
  • Brockman AH, Orlando R. New immobilization chemistry for probe affinity mass spectrometry. Rapid Commun. Mass Spectrom.10(13), 1688–1692 (1996).
  • Yip TT, Van de Water J, Gershwin ME, Coppel RL, Hutchens TW. Cryptic antigenic determinants on the extracellular pyruvate dehydrogenase complex/mimeotope found in primary biliary cirrhosis. A probe by affinity mass spectrometry. J. Biol. Chem.271(51), 32825–32833 (1996).
  • Zhao Y, Muir TW, Kent SB et al. Mapping protein–protein interactions by affinity-directed mass spectrometry. Proc. Natl Acad. Sci. USA93(9), 4020–4024 (1996).
  • Liang X, Lubman DM, Rossi DT, Nordblom GD, Barksdale CM. On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.70(3), 498–503 (1998).
  • Davies H, Lomas L, Austen B. Profiling of amyloid beta peptide variants using SELDI protein chip arrays. Biotechniques27(6), 1258–1261 (1999).
  • Nelson RW, Krone JR, Bieber AL, Williams P. Mass-spectrometric immunoassay. Anal. Chem.67(7), 1153–1158 (1995).
  • Krone JR, Nelson RW, Williams P. Mass spectrometric immunoassay. Proc. Soc. Photo Opt. Instrum. Eng.2680, 415–421 (1996).
  • Nelson RW, Krone JR, Tubbs KA, Dogruel D. Mass spectrometric methods for biomolecular characterization. In: New Methods for the Study of Biomolecular Complexes. Ens W, Standing KG, Chernushevich IV (Eds). Kluwer, Dordrecht, 225–238 (1998).
  • Wang R, Sweeney D, Gandy SE, Sisodia SS. The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid β protein and variants by immunoprecipitation-mass spectrometry. J. Biol. Chem.271(50), 31894–31902 (1996).
  • Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R. Interfacing mass spectrometric immunoassays with BIA. BIA Journal3(1), 16–17 (1996).
  • Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R. BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. Anal. Biochem.244(1), 124–132 (1997).
  • Nelson RW, Krone JR, Jansson O. Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 1. Chip-based analysis. Anal. Chem.69(21), 4363–4368 (1997).
  • Nelson RW, Krone JR, Jansson O. Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 2. Fiber optic-based analysis. Anal. Chem.69(21), 4369–4374 (1997).
  • Resing KA, Meyer-Arendt K, Mendoza AM et al. Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal. Chem.76(13), 3556–3568 (2004).
  • Anderson NL, Polanski M, Pieper R et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics3(4), 311–326 (2004).
  • Yan W, Lee H, Deutsch EW et al. A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol. Cell. Proteomics3(10), 1039–1041 (2004).
  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis16(7), 1090–1094 (1995).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov.1(9), 683–695 (2002).
  • Liotta LA, Kohn EC, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA286(18), 2211–2214 (2001).
  • Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis21(6), 1164–1177 (2000).
  • Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. SELDI-TOF MS for diagnostic proteomics. Anal. Chem.75(7), A148–A155 (2003).
  • Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom. Rev.23(1), 34–44 (2004).
  • Tubbs KA, Nedelkov D, Nelson RW. Detection and quantification of β-2-microglobulin using mass spectrometric immunoassay. Anal. Biochem.289(1), 26–35 (2001).
  • Kiernan UA, Tubbs KA, Gruber K et al. High-throughput protein characterization using mass spectrometric immunoassay. Anal. Biochem.301(1), 49–56 (2002).
  • Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Comparative phenotypic analyses of human plasma and urinary retinol binding protein using mass spectrometric immunoassay. Biochem. Biophys. Res. Commun.297(2), 401–405 (2002).
  • Niederkofler EE, Tubbs KA, Kiernan UA, Nedelkov D, Nelson RW. Novel mass spectrometric immunoassays for the rapid structural characterization of plasma apolipoproteins. J. Lipid Res.44(3), 630–639 (2003).
  • Kiernan UA, Tubbs KA, Nedelkov D et al. Comparative urine protein phenotyping using mass spectrometric immunoassay. J. Proteome Res.2(2), 191–197 (2003).
  • Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Detection of novel truncated forms of human serum amyloid A protein in human plasma. FEBS Lett.537(1–3), 166–170 (2003).
  • Kiernan UA, Nedelkov D, Tubbs KA, Niederkofler EE, Nelson RW. Proteomic characterization of novel serum amyloid P component variants from human plasma and urine. Proteomics4(6), 1825–1829 (2004).
  • Nelson RW, Nedelkov D, Tubbs KA, Kiernan UA. Quantitative mass spectrometric immunoasay of insulin like growth factor 1. J. Proteome Res.3(4), 851–855 (2004).
  • Kiernan UA, Nedelkov D, Tubbs KA, Niederkofler EE, Nelson RW. Selected expression profiling of full-length proteins and their variants in human plasma. Clin. Proteomics. J.1(1), 7–16 (2004).
  • Tubbs KA, Kiernan UA, Niederkofler EE et al. High-throughput MS-based protein phenotyping: application to haptoglobin. Proteomics5(18), 5002–5007 (2005).
  • Kiernan UA, Addobbati R, Nedelkov D, Nelson RW. Quantitative multiplexed C-reactive protein mass spectrometric immunoassay. J. Proteome Res.5(7), 1682–1687 (2006).
  • Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating human plasma proteins diversity. PNAS102(31), 10852–10857 (2005).
  • Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW. High-throughput comprehensive analysis of human plasma proteins: a step toward population proteomics. Anal. Chem.76(6), 1733–1737 (2004).
  • Niederkofler EE, Tubbs KA, Gruber K et al. Determination of β-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal. Chem.73(14), 3294–3299 (2001).
  • Tubbs KA, Kiernan UA, Niederkofler EE et al. Development of recombinant-based mass spectrometric immunoassay with application to resistin expression profiling. Anal. Chem.78(10), 3271–3276 (2006).
  • Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuat.B54(1–2), 3–15 (1999).
  • Mukhopadhyay R. Surface plasmon resonance instruments diversify. Anal. Chem.77(15), A313–A317 (2005).
  • Sonksen CP, Nordhoff E, Jansson O, Malmqvist M, Roepstorff P. Combining MALDI mass spectrometry and biomolecular interaction analysis using a biomolecular interaction analysis instrument. Anal. Chem.70(13), 2731–2736 (1998).
  • Nelson RW, Jarvik JW, Taillon BE, Tubbs KA. BIA/MS of epitope-tagged peptides directly from E. coli lysate: multiplex detection and protein identification at low-femtomole to subfemtomole levels. Anal. Chem.71(14), 2858–2865 (1999).
  • Sonksen CP, Roepstorff P, Markgren PO et al. Capture and analysis of low molecular weight ligands by surface plasmon resonance combined with mass spectrometry. Eur. J. Mass Spectrom.7(4–5), 385–391 (2001).
  • Mattei B, Cervone F, Roepstorff P. The interaction between endopolygalacturonase from Fusarium moniliforme and PGIP from Phaseolus vulgaris studied by surface plasmon resonance and mass spectrometry. A presentation for the ESF workshop ‘proteomics: focus on protein interactions’. Compar. Funct. Genom.2(6), 359–364 (2001).
  • Gilligan JJ, Schuck P, Yergey AL. Mass spectrometry after capture and small-volume elution of analyte from a surface plasmon resonance biosensor. Anal. Chem.74(9), 2041–2047 (2002).
  • Kikuchi J, Furukawa Y, Hayashi N. Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass Spectrometry. Mol. Biotechnol.23(3), 203–212 (2003).
  • Lopez F, Pichereaux C, Burlet-Schiltz O et al. Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules. Proteomics3(4), 402–412 (2003).
  • Zhukov A, Schurenberg M, Jansson O, Areskoug D, Buijs J. Integration of surface plasmon resonance with mass spectrometry: automated ligand fishing and sample preparation for MALDI MS using a Biacore 3000 biosensor. J. Biomol. Tech.15(2), 112–119 (2004).
  • Borch J, Roepstorff P. Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry. Anal. Chem.76(18), 5243–5248 (2004).
  • Larsericsdotter H, Jansson O, Zhukov A et al. Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: how to avoid and utilize nonspecific adsorption. Proteomics6(8), 2355–2364 (2006).
  • Nelson RW, Nedelkov D, Tubbs KA. Biomolecular interaction analysis mass spectrometry. BIA/MS can detect and characterize proteins in complex biological fluids at the low-to subfemtomole level. Anal. Chem.72(11), A404–A411 (2000).
  • Nelson RW, Nedelkov D, Tubbs KA. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis21(6), 1155–1163 (2000).
  • Nedelkov D, Nelson RW. Practical considerations in BIA/MS: optimizing the biosensor-mass spectrometry interface. J. Mol. Recognit.13(3), 140–145 (2000).
  • Nedelkov D, Rasooly A, Nelson RW. Multitoxin biosensor-mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of Staphylococcaltoxins in food. Int. J. Food Microbiol.60(1), 1–13 (2000).
  • Nedelkov D, Nelson RW. Exploring the limit of detection in biomolecular interaction analysis mass spectrometry (BIA/MS): detection of attomole amounts of native proteins present in complex biological mixtures. Anal. Chim. Acta423(1), 1–7 (2000).
  • Nedelkov D, Nelson RW. Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non- specific binding and detection of multi-protein complexes. Biosens. Bioelectron.16(9–12), 1071–1078 (2001).
  • Nedelkov D, Nelson RW. Analysis of human urine protein biomarkers via biomolecular interaction analysis mass spectrometry. Am. J. Kidney Dis.38(3), 481–487 (2001).
  • Nedelkov D, Nelson RW. Delineation of in vivo assembled multiprotein complexes via biomolecular interaction analysis mass spectrometry. Proteomics1(11), 1441–1446 (2001).
  • Nedelkov D, Tubbs KA, Nelson RW. Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry. Proteomics2(4), 441–446 (2002).
  • Natsume T, Taoka M, Manki H et al. Rapid analysis of protein interactions: on-chip micropurification of recombinant protein expressed in Esherichia coli. Proteomics2(9), 1247–1253 (2002).
  • Nedelkov D, Nelson RW. Design and use of multi-affinity surfaces in biomolecular interaction analysis-mass spectrometry (BIA/MS): a step toward the design of SPR/MS arrays. J. Mol. Recognit.16(1), 15–19 (2003).
  • Nedelkov D, Nelson RW. Delineating protein–protein interactions via biomolecular interaction analysis-mass spectrometry. J. Mol. Recognit.16(1), 9–14 (2003).
  • Nedelkov D, Nelson RW, Kiernan UA, Niederkofler EE, Tubbs KA. Detection of bound and free IGF-1 and IGF-2 in human plasma via biomolecular interaction analysis mass spectrometry. FEBS Lett.536(1–3), 130–134 (2003).
  • Nedelkov D, Nelson RW. Detection of Staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl. Environ. Microbiol.69(9), 5212–5215 (2003).
  • Grote J, Dankbar N, Gedig E, Koenig S. Surface plasmon resonance/mass spectrometry interface. Anal. Chem.77(4), 1157–1162 (2005).
  • Wegner GJ, Lee H J, Corn RM. Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal. Chem.74(20), 5161–5168 (2002).
  • Wegner GJ, Wark AW, Lee HJ et al. Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal. Chem.76(19), 5677–5684 (2004).
  • Kanda V, Kariuki JK, Harrison DJ, McDermott MT. Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Anal. Chem.76(24), 7257–7262 (2004).
  • Kyo M, Usui-Aoki K, Koga H. Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique. Anal. Chem.77(22), 7115–7121 (2005).
  • Usui-Aoki K, Shimada K, Nagano M, Kawai M, Koga H. A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics5(9), 2396–2401 (2005).
  • Nedelkov D, Tubbs KA, Nelson RW. SPR-enabled mass spectrometry arrays. Electrophoresis27(18), 3671–3675 (2006).
  • Lee HJ, Nedelkov D, Corn RM. SPR imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal. Chem.78(18), 6504–6510 (2006).
  • Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer3(4), 267–275, (2003).
  • Bons JA, Wodzig WK, van Dieijen-Visser MP. Protein profiling as a diagnostic tool in clinical chemistry: a review. Clin. Chem. Lab. Med.43(12), 1281–1290 (2005).
  • Engwegen JY, Gast MC, Schellens JH, Beijnen JH. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol. Sci.27(5), 251–259 (2006).
  • Nedelkov D. Population proteomics: addressing protein diversity in humans. Expert Rev. Proteomics2(3), 315–324 (2005).
  • Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept, attributes, and potential for cancer biomarkers research. Mol. Cell. Proteomics5(10), 1811–1818 (2006).

Website

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.