94
Views
11
CrossRef citations to date
0
Altmetric
Review

Protein profiling of pancreatic islets

&
Pages 665-675 | Published online: 09 Jan 2014

References

  • Donath MY, Halban PA. Decreased β-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia47(3), 581–589 (2004).
  • Maier LM, Wicker LS. Genetic susceptibility to Type 1 diabetes. Curr. Opin. Immunol.17(6), 601–608 (2005).
  • Zimmet P. The burden of Type 2 diabetes: are we doing enough? Diabetes Metab.29(4 Pt 2), 6S9–6S18 (2003).
  • Barroso I. Genetics of Type 2 diabetes. Diabet. Med.22(5), 517–535 (2005).
  • Gloyn AL. The search for Type 2 diabetes genes. Ageing Res. Rev.2(2), 111–127 (2003).
  • Lingohr MK, Buettner R, Rhodes CJ. Pancreatic β-cell growth and survival – a role in obesity-linked Type 2 diabetes? Trends Mol. Med.8(8), 375–384 (2002).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54(6), 1615–1625 (2005).
  • Ashcroft FM, Ashcroft SJM. Mechanisms of insulin secretion. In: Insulin, Molecular Biology to Pathology. Ashcroft FM, Ashcroft SJM (Eds). Oxford Univerity Press, Oxford, UK, 97–150 (1992).
  • Slack J. Developmental biology of the pancreas. Development121, 1569–1580 (1995).
  • Heller RS, Jenny M, Collombat P et al. Genetic determinants of pancreatic ε-cell development. Dev. Biol.286(1), 217–224 (2005).
  • Simpson IA, Cushman SW. Hormonal regulation of mammalian glucose transport. Annu. Rev. Biochem.55, 1059–1089 (1986).
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature414(6865), 799–806 (2001).
  • Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C. Oral glucose tolerance test minimal model indexes of β-cell function and insulin sensitivity. Diabetes50(1), 150–158 (2001).
  • Polonsky KS, Given BD, Hirsch L et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J. Clin. Invest.81(2), 435–441 (1988).
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Β-cell deficit and increased β-cell apoptosis in humans with Type 2 diabetes. Diabetes52(1), 102–110 (2003).
  • Pick A, Clark J, Kubstrup C et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes47(3), 358–364 (1998).
  • Steil GM, Trivedi N, Jonas JC et al. Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression. Am. J. Physiol. Endocrinol. Metab.280(5), E788–E796 (2001).
  • Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes52(3), 726–733 (2003).
  • Donath MY, Ehses JA, Maedler K et al. Mechanisms of β-cell death in Type 2 diabetes. Diabetes54(Suppl. 2), 108–113 (2005).
  • Del Prato S. In search of normoglycemia in diabetes: controlling postprandial glucose. Int. J. Obes. Relat. Metab. Disord.26(Suppl. 3), 9–17 (2002).
  • Rosmalen JG, Leenen PJ, Pelegri C, Drexhage HA, Homo-Delarche F. Islet abnormalities in the pathogenesis of autoimmune diabetes. Trends Endocrinol. Metab.13(5), 209–214 (2002).
  • Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia44(12), 2115–2133 (2001).
  • Storling J, Binzer J, Andersson AK et al. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic β-cells via potentiation of JNK activity and inhibition of Akt. Diabetologia48(10), 2039–2050 (2005).
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis18(3–4), 533–537 (1997).
  • Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell123(7), 1307–1321 (2005).
  • Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409(6822), 860–921 (2001).
  • Ellmark P, Ingvarsson J, Carlsson A, Lundin SB, Wingren C, Borrebaeck CA. Identification of protein expression signatures associated with H. pylori infection and gastric adenocarcinoma using recombinant antibody microarrays. Mol. Cell Proteomics5, 1638–1646 (2006).
  • Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol.2(2), 1–13 (2001).
  • Haab BB, Paulovich AG, Anderson NL et al. A reagent resource to identify proteins and peptides of interest to the cancer community: a workshop report. Mol. Cell Proteomics5, 1996–2007 (2006).
  • Gorg A, Obermaier C, Boguth G et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis21(6), 1037–1053 2000).
  • Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis21(6), 1123–1244 (2000).
  • Wu J, Lenchik NJ, Pabst MJ, Solomon SS, Shull J, Gerling IC. Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis26(1), 225–237 (2005).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18(11), 2071–2077 (1997).
  • Van den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr. Opin. Biotechnol.15(1), 38–43 (2004).
  • Hu X, Friedman D, Hill S et al. Proteomic exploration of pancreatic islets in mice null for the α2A adrenergic receptor. J. Mol. Endocrinol.35(1), 73–88 (2005).
  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA97(17), 9390–9395 (2000).
  • Hutchens TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom.7, 576–580 (1993).
  • Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight–mass spectrometry. Electrophoresis21(6), 1164–1177 (2000).
  • Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun.292(3), 587–592 (2002).
  • Adam BL, Qu Y, Davis JW et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res.62(13), 3609–3614 (2002).
  • Nyblom HK, Thörn K, Ahmed M, Bergsten P. Mitochondrial protein patterns correlating with impaired insulin secretion from INS-1E cells exposed to elevated glucose concentrations. Proteomics6, 5193–5198 (2006).
  • Ortsäter H, Sundsten T, Lin J-M, Bergsten P. Islet proteins implicated in glucose- and lipid-induced metabolic and secretory alterations identified by correlating islet phenotype with islet global protein patterns. Diabetologia46(Suppl. 6), A509 (2003).
  • Paweletz CP, Gillespie JW, Ornstein DK et al. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip. Drug Dev. Res.49, 34–42 (2000).
  • Qu Y, Adam BL, Yasui Y et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem.48(10), 1835–1843 (2002).
  • Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology145(2), 667–678 (2004).
  • Skelly RH, Bollheimer LC, Wicksteed BL, Corkey BE, Rhodes CJ. A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. Biochem. J.331(Pt 2), 553–561 (1998).
  • Leibowitz G, Oprescu AI, Uckaya G, Gross DJ, Cerasi E, Kaiser N. Insulin does not mediate glucose stimulation of proinsulin biosynthesis. Diabetes52(4), 998–1003 (2003).
  • Fung ET, Yip TT, Lomas L et al. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int. J. Cancer115(5), 783–789 (2005).
  • Collins H, Najafi H, Buettger C, Rombeau J, Settle RG, Matschinsky FM. Identification of glucose response proteins in two biological models of β-cell adaptation to chronic high glucose exposure. J. Biol. Chem.267(2), 1357–1366 (1992).
  • Collins HW, Buettger C, Matschinsky F. High-resolution two-dimensional polyacrylamide gel electrophoresis reveals a glucose-response protein of 65 kDa in pancreatic islet cells. Proc. Natl Acad. Sci. USA87(14), 5494–5498 (1990).
  • Ahmed M, Bergsten P. Glucose-induced changes of multiple mouse islet proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia48(3), 477–485 (2005).
  • Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J. Proteome Res.4(3), 931–940 (2005).
  • Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol.14(1), 20–28 (2004).
  • Nicolls MR, D’Antonio JM, Hutton JC, Gill RG, Czwornog JL, Duncan MW. Proteomics as a tool for discovery: proteins implicated in Alzheimer’s disease are highly expressed in normal pancreatic islets. J. Proteome Res.2(2), 199–205 (2003).
  • Barg S, Huang P, Eliasson L et al. Priming of insulin granules for exocytosis by granular Cl- uptake and acidification. J. Cell Sci.114(Pt 11), 2145–2154 (2001).
  • Howell SL, Tyhurst M. Microtubules, microfilaments and insulin-secretion. Diabetologia22(5), 301–308 (1982).
  • Varadi A, Ainscow EK, Allan VJ, Rutter GA. Molecular mechanisms involved in secretory vesicle recruitment to the plasma membrane in β-cells. Biochem. Soc. Trans.30(2), 328–332 (2002).
  • Sanchez JC, Chiappe D, Converset V et al. The mouse SWISS–2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics1(1), 136–163 (2001).
  • Sanchez JC, Converset V, Nolan A et al. Effect of rosiglitazone on the differential expression of diabetes-associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol. Cell Proteomics1(7), 509–516 2002).
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature372(6505), 425–432 (1994).
  • Halaas JL, Gajiwala KS, Maffei M et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science269(5223), 543–546 (1995).
  • Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L. Alteration of islet cell populations in spontaneously diabetic mice. Diabetes27(1), 1–7 (1978).
  • Orci L, Gabbay KH, Malaisse WJ. Pancreatic β-cell web: its possible role in insulin secretion. Science175(26), 1128–1130 (1972).
  • Li G, Rungger-Brandle E, Just I, Jonas JC, Aktories K, Wollheim CB. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol. Biol. Cell5(11), 1199–1213 (1994).
  • Jörns A, Gunther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S. Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of Type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes54(7), 2041–2052 (2005).
  • Sparre T, Bergholdt R, Nerup J, Pociot F. Application of genomics and proteomics in Type 1 diabetes pathogenesis research. Expert Rev. Mol. Diagn.3(6), 743–757 (2003).
  • Andersen HU, Fey SJ, Larsen PM et al. Interleukin-1β induced changes in the protein expression of rat islets: a computerized database. Electrophoresis18(11), 2091–2103 (1997).
  • John NE, Andersen HU, Fey SJ et al. Cytokine or chemically derived nitric oxide alters the expression of proteins detected by two-dimensional gel electrophoresis in neonatal rat islets of Langerhans. Diabetes49(11), 1819–1829 (2000).
  • Larsen PM, Fey SJ, Larsen MR et al. Proteome analysis of interleukin-1β-induced changes in protein expression in rat islets of Langerhans. Diabetes50(5), 1056–1063 (2001).
  • Eizirik DL, Bjorklund A, Welsh N. Interleukin-1-induced expression of nitric oxide synthase in insulin-producing cells is preceded by c-fos induction and depends on gene transcription and protein synthesis. FEBS Lett.317(1–2), 62–66 (1993).
  • Sparre T, Christensen UB, Mose Larsen P et al. IL-1β induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis. Diabetologia45(11), 1550–1561 (2002).
  • Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium32(5–6), 235–249 (2002).
  • Oyadomari S, Takeda K, Takiguchi M et al. Nitric oxide-induced apoptosis in pancreatic β-cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl Acad. Sci. USA98(19), 10845–10850 (2001).
  • Harding HP, Zeng H, Zhang Y et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell7(6), 1153–1163 (2001).
  • Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology145(11), 5087–5096 (2004).
  • Roduit R, Nolan C, Alarcon C et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes53(4), 1007–1019 (2004).
  • Björklund A, Lansner A, Grill VE. Glucose-induced [Ca2+] abnormalities in human pancreatic islets: important role of overstimulation. Diabetes49(11), 1840–1848 (2000).
  • Song SH, Rhodes CJ, Veldhuis JD, Butler PC. Diazoxide attenuates glucose-induced defects in first-phase insulin release and pulsatile insulin secretion in human islets. Endocrinology144(8), 3399–3405 (2003).
  • Ortsäter H, Liss P, Åkerman KE, Bergsten P. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflügers Arch.444(4), 506–512 (2002).

Websites

  • ExPASy–UniProt Knowledgebase: Swiss-Prot and TrEMBL www.expasy.org/sprot/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.