120
Views
22
CrossRef citations to date
0
Altmetric
Review

Systems biology approach to integrative comparative genomics

&
Pages 107-119 | Published online: 09 Jan 2014

References

  • Fleischmann RD, Adams MD, White O et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science269(5223), 496–512 (1995).
  • Fraser CM, Gocayne JD, White O et al. The minimal gene complement of Mycoplasma genitalium. Science270(5235), 397–403 (1995).
  • Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC. The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res.34(Database issue), D332–D334 (2006).
  • Kitano H. Systems biology: a brief overview. Science295(5560), 1662–1664 (2002).
  • Thornton JW, DeSalle R. Gene family evolution and homology: genomics meets phylogenetics. Annu. Rev. Genomics Hum. Genet.1, 41–73 (2000).
  • Cooper GM, Brudno M, Stone EA, Dubchak I, Batzoglou S, Sidow A. Characterization of evolutionary rates and constraints in three mammalian genomes. Genome Res.14(4), 539–548 (2004).
  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423(6937), 241–254 (2003).
  • Prohaska SJ, Fried C, Flamm C, Wagner GP, Stadler PF. Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. Mol. Phylogenet. Evol.31(2), 581–604 (2004).
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.215(3), 403–410 (1990).
  • Wall DP, Fraser HB, Hirsh AE. Detecting putative orthologs. Bioinformatics19(13), 1710–1711 (2003).
  • Edgar RC, Batzoglou Y. Multiple sequence alignment. Curr. Opin. Struct. Biol.16(3), 368–373 (2006).
  • Margulies EH, Chen CW, Green ED. Differences between pair-wise and multi-sequence alignment methods affect vertebrate genome comparisons. Trends Genet.22(4), 187–193 (2006).
  • Hinrichs AS, Karolchik D, Baertsch R et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res.34(Database issue), D590–D598 (2006).
  • Xie X, Lu J, Kulbokas EJ et al. Systematic discovery of regulatory motifs in human promoters and 3´ UTRs by comparison of several mammals. Nature434(7031), 338–345 (2005).
  • ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science306(5696), 636–640 (2004).
  • Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res.14(5), 988–995 (2004).
  • Yeh RF, Lim LP, Burge CB. Computational inference of homologous gene structures in the human genome. Genome Res.11(5), 803–816 (2001).
  • Meyer IM, Durbin R. Comparative ab initio prediction of gene structures using pair HMMs. Bioinformatics18(10), 1309–1318 (2002).
  • Korf I, Flicek P, Duan D, Brent MR. Integrating genomic homology into gene structure prediction. Bioinformatics17(Suppl. 1), S140–S148 (2001).
  • Dewey C, Wu JQ, Cawley S, Alexandersson M, Gibbs R, Pachter L. Accurate identification of novel human genes through simultaneous gene prediction in human, mouse, and rat. Genome Res.14(4), 661–664 (2004).
  • Koski LB, Golding GB. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol.52(6), 540–542 (2001).
  • Dessimoz C, Boeckmann B, Roth AC, Gonnet GH. Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits. Nucleic Acids Res.34(11), 3309–3316 (2006).
  • Tatusov RL, Fedorova ND, Jackson JD et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics4, 41 (2003).
  • Eyre TA, Wright MW, Lush MJ, Bruford EA. HCOP: a searchable database of human orthology predictions. Brief Bioinform.8(1), 2–5 (2007).
  • Wheeler DL, Barrett T, Benson DA et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.34(Database issue), D173–D180 (2006).
  • Deluca TF, Wu IH, Pu J et al. Roundup: a multi-genome repository of orthologs and evolutionary distances. Bioinformatics22(16), 2044–2046 (2006).
  • Apweiler R, Attwood TK, Bairoch A et al. InterPro – an integrated documentation resource for protein families, domains and functional sites. Bioinformatics16(12), 1145–1150 (2000).
  • Sunyaev S, Ramensky V, Koch I, Lathe W III, Kondrashov AS, Bork P. Prediction of deleterious human alleles. Hum. Mol. Genet.10(6), 591–597 (2001).
  • Guiliano DB, Hall N, Jones SJ et al. Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes. Genome Biol.3(10), RESEARCH0057 (2002).
  • Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature422(6930), 433–438 (2003).
  • Kuwahara T, Yamashita A, Hirakawa H et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc. Natl Acad. Sci. USA101(41), 14919–14924 (2004).
  • Wendel JF. Genome evolution in polyploids. Plant Mol. Biol.42(1), 225–249 (2000).
  • Fried C, Prohaska SJ, Stadler PF. Independent Hox-cluster duplications in lampreys. J. Exp. Zoolog. B Mol. Dev. Evol.299(1), 18–25 (2003).
  • Cheng Z, Ventura M, She X et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature437(7055), 88–93 (2005).
  • Cannon SB, McCombie WR, Sato S et al. Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol. Genet. Genomics270(4), 347–361 (2003).
  • Wiehe T, Gebauer-Jung S, Mitchell-Olds T, Guigo R. SGP-1: prediction and validation of homologous genes based on sequence alignments. Genome Res.11(9), 1574–1583 (2001).
  • Alexandersson M, Cawley S, Pachter L. SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. Genome Res.13(3), 496–502 (2003).
  • Pan X, Stein L, Brendel V. SynBrowse: a synteny browser for comparative sequence analysis. Bioinformatics21(17), 3461–3468 (2005).
  • Shabalina SA, Ogurtsov AY, Kondrashov VA, Kondrashov AS. Selective constraint in intergenic regions of human and mouse genomes. Trends Genet.17(7), 373–376 (2001).
  • Dermitzakis ET, Reymond A, Scamuffa N et al. Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science302(5647), 1033–1035 (2003).
  • Hofacker IL, Fekete M, Flamm C et al. Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res.26(16), 3825–3836 (1998).
  • Rivas E, Klein RJ, Jones TA, Eddy SR. Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr. Biol.11(17), 1369–1373 (2001).
  • Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA102(7), 2454–2459 (2005).
  • Moulton V. Tracking down noncoding RNAs. Proc. Natl Acad. Sci. USA102(7), 2269–2270 (2005).
  • Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol.23(11), 1383–1390 (2005).
  • Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res.13(12), 2541–2558 (2003).
  • Harrison PM, Echols N, Gerstein MB. Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. Nucleic Acids Res.29(3), 818–830 (2001).
  • Harrison PM, Milburn D, Zhang Z, Bertone P, Gerstein M. Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res.31(3), 1033–1037 (2003).
  • Homma K, Fukuchi S, Kawabata T, Ota M, Nishikawa K. A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome. Gene294(1–2), 25–33 (2002).
  • D’Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Brief Funct. Genomic Proteomic3(2), 157–167 (2004).
  • Zhang Z, Carriero N, Gerstein M. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet.20(2), 62–67 (2004).
  • Cliften P, Sudarsanam P, Desikan A et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science301(5629), 71–76 (2003).
  • Hardison RC. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet.16(9), 369–372 (2000).
  • Nardone J, Lee DU, Ansel KM, Rao A. Bioinformatics for the ‘bench biologist’: how to find regulatory regions in genomic DNA. Nat. Immunol.5(8), 768–774 (2004).
  • Pennacchio LA, Olivier M, Hubacek JA et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science294(5540), 169–173 (2001).
  • Gottgens B, Gilbert JG, Barton LM et al. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res.11(1), 87–97 (2001).
  • Loots GG, Locksley RM, Blankespoor CM et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science288(5463), 136–140 (2000).
  • Gottgens B, Barton LM, Gilbert JG et al. Analysis of vertebrate SCL loci identifies conserved enhancers. Nat. Biotechnol.18(2), 181–186 (2000).
  • Touchman JW, Dehejia A, Chiba-Falek O et al. Human and mouse α-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res.11(1), 78–86 (2001).
  • Blanchette M, Bataille AR, Chen X et al. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res.16(5), 656–668 (2006).
  • Kolbe D, Taylor J, Elnitski L et al. Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. Genome Res.14(4), 700–707 (2004).
  • King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res.15(8), 1051–1060 (2005).
  • Donaldson IJ, Chapman M, Gottgens B. TFBScluster: a resource for the characterization of transcriptional regulatory networks. Bioinformatics21(13), 3058–3059 (2005).
  • Blanchette M, Tompa M. FootPrinter: a program designed for phylogenetic footprinting. Nucleic Acids Res.31(13), 3840–3842 (2003).
  • Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res.12(5), 832–839 (2002).
  • Palaniswamy SK, Jin VX, Sun H, Davuluri RV. OMGProm: a database of orthologous mammalian gene promoters. Bioinformatics21(6), 835–836 (2005).
  • Dieterich C, Wang H, Rateitschak K, Luz H, Vingron M. CORG: a database for COmparative Regulatory Genomics. Nucleic Acids Res.31(1), 55–57 (2003).
  • Prabhakar S, Noonan JP, Paabo S, Rubin EM. Accelerated evolution of conserved noncoding sequences in humans. Science314(5800), 786 (2006).
  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science270(5235), 484–487 (1995).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270(5235), 467–470 (1995).
  • Bertone P, Stolc V, Royce TE et al. Global identification of human transcribed sequences with genome tiling arrays. Science306(5705), 2242–2246 (2004).
  • Kampa D, Cheng J, Kapranov P et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res.14(3), 331–342 (2004).
  • Johnson JM, Edwards S, Shoemaker D, Schadt EE. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet.21(2), 93–102 (2005).
  • Cheng J, Kapranov P, Drenkow J et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science308(5725), 1149–1154 (2005).
  • Okazaki Y, Furuno M, Kasukawa T et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature420(6915), 563–573 (2002).
  • Imanishi T, Itoh T, Suzuki Y et al. Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol.2(6), e162 (2004).
  • Stolc V, Gauhar Z, Mason C et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science306(5696), 655–660 (2004).
  • Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of the mammalian genome. Science309(5740), 1559–1563 (2005).
  • Gilad Y, Rifkin SA, Bertone P, Gerstein M, White KP. Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Res.15(5), 674–680 (2005).
  • Canales RD, Luo Y, Willey JC et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol.24(9), 1115–1122 (2006).
  • Ball CA, Brazma A. MGED standards: work in progress. Omics10(2), 138–144 (2006).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat. Genet.29(4), 365–371 (2001).
  • Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol.314(5), 1053–1066 (2001).
  • Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature440(7081), 242–245 (2006).
  • Rifkin SA, Houle D, Kim J, White KP. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature438(7065), 220–223 (2005).
  • Su AI, Cooke MP, Ching KA et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA99(7), 4465–4470 (2002).
  • Kho AT, Kang PB, Kohane IS, Kunkel LM. Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes. BMC Musculoskelet. Disord.7, 23 (2006).
  • Enard W, Khaitovich P, Klose J et al. Intra- and interspecific variation in primate gene expression patterns. Science296(5566), 340–343 (2002).
  • Sugnet CW, Kent WJ, Ares M Jr, Haussler D. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac. Symp. Biocomput.66–77 (2004).
  • Greenbaum D, Jansen R, Gerstein M. Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics18(4), 585–596 (2002).
  • Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415(6868), 180–183 (2002).
  • Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415(6868), 141–147 (2002).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293(5537), 2101–2105 (2001).
  • Hegyi H, Lin J, Greenbaum D, Gerstein M. Structural genomics analysis: characteristics of atypical, common, and horizontally transferred folds. Proteins47(2), 126–141 (2002).
  • Chervitz SA, Aravind L, Sherlock G et al. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science282(5396), 2022–2028 (1998).
  • Aravind L, Subramanian G. Origin of multicellular eukaryotes – insights from proteome comparisons. Curr. Opin. Genet. Dev.9(6), 688–694 (1999).
  • Washburn MP, Yates JR III. Analysis of the microbial proteome. Curr. Opin. Microbiol.3(3), 292–297 (2000).
  • Gerstein M, Hegyi H. Comparing genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiol. Rev.22(4), 277–304 (1998).
  • Baumeister W. From proteomic inventory to architecture. FEBS Lett.579(4), 933–937 (2005).
  • Burley SK. An overview of structural genomics. Nat. Struct. Biol.7(Suppl.), 932–934 (2000).
  • Brenner SE. A tour of structural genomics. Nat. Rev. Genet.2(10), 801–809 (2001).
  • Hegyi H, Gerstein M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J. Mol. Biol.288(1), 147–164 (1999).
  • Gerstein M, Lin J, Hegyi H. Protein folds in the worm genome. Pac. Symp. Biocomput.,2000, 30–41(2000).
  • Gerstein M, Levitt M. A structural census of the current population of protein sequences. Proc. Natl Acad. Sci. USA94(22), 11911–11916 (1997).
  • Aravind L, Iyer LM, Koonin EV. Comparative genomics and structural biology of the molecular innovations of eukaryotes. Curr. Opin. Struct. Biol.16(3), 409–419 (2006).
  • Wolf YI, Brenner SE, Bash PA, Koonin EV. Distribution of protein folds in the three superkingdoms of life. Genome Res.9(1), 17–26 (1999).
  • Qian J, Stenger B, Wilson CA et al. PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acids Res.29(8), 1750–1764 (2001).
  • Chandonia JM, Brenner SE. The impact of structural genomics: expectations and outcomes. Science311(5759), 347–351 (2006).
  • Eisen JA. Assessing evolutionary relationships among microbes from whole-genome analysis. Curr. Opin. Microbiol.3(5), 475–480 (2000).
  • Lin J, Gerstein M. Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res.10(6), 808–818 (2000).
  • Harris MA, Clark J, Ireland A et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res.32(Database issue), D258–D261 (2004).
  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res.32(Database issue), D277–D280 (2004).
  • Joshi-Tope G, Gillespie M, Vastrik I et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res.33(Database issue), D428–D432 (2005).
  • Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285(5429), 901–906 (1999).
  • Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418(6896), 387–391 (2002).
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Orchard S, Hermjakob H, Apweiler R. Annotating the human proteome. Mol. Cell. Proteomics4(4), 435–440 (2005).
  • Huh WK, Falvo JV, Gerke LC et al. Global analysis of protein localization in budding yeast. Nature425(6959), 686–691 (2003).
  • Nuhse TS, Stensballe A, Jensen ON, Peck SC. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell16(9), 2394–2405 (2004).
  • Froehlich JE, Wilkerson CG, Ray WK et al. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res.2(4), 413–425 (2003).
  • Kim H, Melen K, Osterberg M, von Heijne G. A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl Acad. Sci. USA103(30), 11142–11147 (2006).
  • Gaucher SP, Taylor SW, Fahy E et al. Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J. Proteome Res.3(3), 495–505 (2004).
  • Gietz RD. Yeast two-hybrid system screening. Methods Mol. Biol.313, 345–371 (2006).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae.Nature403(6770), 623–627 (2000).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science302(5651), 1727–1736 (2003).
  • Formstecher E, Aresta S, Collura V et al. Protein interaction mapping: a Drosophila case study. Genome Res.15(3), 376–384 (2005).
  • Stanyon CA, Liu G, Mangiola BA et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol.5(12), R96 (2004).
  • Li S, Armstrong CM, Bertin N et al. A map of the interactome network of the metazoan C. elegans. Science303(5657), 540–543 (2004).
  • Tong AH, Lesage G, Bader GD et al. Global mapping of the yeast genetic interaction network. Science303(5659), 808–813 (2004).
  • Lehner B, Fraser AG. A first-draft human protein-interaction map. Genome Biol.5(9), R63 (2004).
  • Gandhi TK, Zhong J, Mathivanan S et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet.38(3), 285–293 (2006).
  • Bader GD, Hogue CW. BIND – a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics16(5), 465–477 (2000).
  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res.32(Database issue), D449–D451 (2004).
  • Suzuki H, Saito R, Kanamori M et al. The mammalian protein–protein interaction database and its viewing system that is linked to the main FANTOM2 viewer. Genome Res.13(6B), 1534–1541 (2003).
  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res.34(Database issue), D535–D539 (2006).
  • Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G. MINT: a Molecular INTeraction database. FEBS Lett.513(1), 135–140 (2002).
  • Mishra GR, Suresh M, Kumaran K et al. Human protein reference database – 2006 update. Nucleic Acids Res.34(Database issue), D411–D414 (2006).
  • Kerrien S, Alam-Faruque Y, Aranda B et al. IntAct – open source resource for molecular interaction data. Nucleic Acids Res.35(Database issue), D561–D565 (2006).
  • Jansen R, Yu H, Greenbaum D et al. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science302(5644), 449–453 (2003).
  • Matthews LR, Vaglio P, Reboul J et al. Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Res.11(12), 2120–2126 (2001).
  • Yu H, Luscombe NM, Lu HX et al. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res.14(6), 1107–1118 (2004).
  • von Mering C, Jensen LJ, Snel B et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res.33(Database issue), D433–D437 (2005).
  • Huang TW, Tien AC, Huang WS et al. POINT: a database for the prediction of protein–protein interactions based on the orthologous interactome. Bioinformatics20(17), 3273–3276 (2004).
  • Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics21(9), 2076–2082 (2005).
  • Kholodenko BN. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol.7(3), 165–176 (2006).
  • de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science307(5710), 724–727 (2005).
  • Tu BP, Kudlicki A, Rowicka M, McKnight SL. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science310(5751), 1152–1158 (2005).
  • Arbeitman MN, Furlong EE, Imam F et al. Gene expression during the life cycle of Drosophila melanogaster. Science297(5590), 2270–2275 (2002).
  • Lamb J, Crawford ED, Peck D et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science313(5795), 1929–1935 (2006).
  • Walhout AJ, Sordella R, Lu X et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science287(5450), 116–122 (2000).
  • Edwards JS, Palsson BO. Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog.16(6), 927–939 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.