263
Views
68
CrossRef citations to date
0
Altmetric
Review

Amino acid-coded tagging approaches in quantitative proteomics

, , , &
Pages 25-37 | Published online: 09 Jan 2014

References

  • Heck AJR, Krijgsveld J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics1, 317–326 (2004).
  • Ong SE, Foster LJ, Mann M. Mass spectrometric-based approaches in quantitative proteomics. Methods29, 124–130 (2003).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1, 252–262 (2005).
  • Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J. Proteome Res.3, 350–363 (2004).
  • Putz S, Reinders J, Reinders Y, Sickmann A. Mass spectrometry-based peptide quantitication: applications and limitations. Expert Rev. Proteomics2, 381–392 (2005).
  • Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J. Proteome Res.5, 651–658 (2006).
  • Zhu H, Pan S, Gu S et al. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom.16, 2115–2123 (2002).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999).
  • Nelson CJ, Hegeman AD, Harms AC, Sussman MR. A quantitative analysis of arabidopsis plasma membrane using trypsin-catalyzed 18O labeling. Mol. Cell. Proteomics5(8), 1382–1395 (2006).
  • Oda Y, Huang K, Cross FR et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA96, 6591–6596 (1999).
  • Chen X, Smith LM, Bradbury EM. Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal. Chem.72, 1134–1143 (2000).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1, 376–386 (2002).
  • Andersen JS, Wilkinson CJ, Mayor T et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature426, 570–574 (2003).
  • Gu S, Liu ZH, Pan SQ et al. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol. Cell. Proteomics3, 998–1008 (2004).
  • Everley PA, Krijgsveld J, Zetter BR, Gygi SP. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics3, 729–735 (2004).
  • Harris MN, Ozpolat B, Abdi F et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood104, 1314–1323 (2004).
  • Zhang RJ, Sioma CS, Wang SH, Regnier FE. Fractionation of isotopically labeled peptides in quantitative proteomics. Anal. Chem.73, 5142–5149 (2001).
  • Hansen KC, Schmitt-Ulms G, Chalkley RJ et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable C-13-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics2, 299–314 (2003).
  • Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics4, 857–872 (2005).
  • Ross PL, Huang YLN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3, 1154–1169 (2004).
  • Williamson BL, Marchese J, Morrice NA. Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol. Cell. Proteomics5, 337–346 (2006).
  • Zhang Y, Wolf-Yadlin A, Ross PL et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics4, 1240–1250 (2005).
  • Zieske LR. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J. Exp. Bot.57, 1501–1508 (2006).
  • Perez PS, Anderson LB, Martinez MB et al. Proteomic analysis of gray platelet syndrome by iTRAQ labelling and mass spectroscopy: a potential new diagnostic strategy for platelet disorders. Blood106, 611A-611A (2005).
  • Hardt M, Witkowska HE, Webb S et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.77, 4947–4954 (2005).
  • Gu S, Du YC, Chen J et al. Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. J. Proteome Res.3, 1191–1200 (2004).
  • Levy F, Bulet P, Ehret-Sabatier L. Proteomic analysis of the systemic immune response of Drosophila. Mol. Cell. Proteomics3, 156–166 (2004).
  • Gruhler A, Schulze WX, Matthiesen R et al. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell. Proteomics4, 1697–1709 (2005).
  • Everley PA, Bakalarski CE, Elias JE et al. Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation. J. Proteome Res.5, 1224–1231 (2006).
  • Gronborg M, Kristiansen TZ, Iwahori A et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteomics5, 157–171 (2006).
  • Hathout Y, Flippin J, Fan C et al. Metabolic labeling of human primary retinal pigment epithelial cells for accurate comparative proteomics. J. Proteome Res.4, 620–627 (2005).
  • McLaughlin P, Zhou Y, Ma T et al. Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia53, 567–582 (2006).
  • Yan Y, Weaver VM, Blair IA. Analysis of protein expression during oxidative stress in breast epithelial cells using a stable isotope labeled proteome internal standard. J. Proteome Res.4, 2007–2014 (2005).
  • Thiede B, Kretschmer A, Rudel T. Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE and MALDI-MS. Proteomics6, 614–622 (2006).
  • Romijn EP, Christis C, Wieffer M et al. Expression clustering reveals detailed coexpression patterns of functionally related proteins during B cell differentiation – a proteomic study using a combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by amino acids in cell culture (SILAC). Mol. Cell. Proteomics4, 1297–1310 (2005).
  • Loyet KM, Ouyang WJ, Eaton DL, Stults JT. Proteomic profiling of surface proteins on Th1 and Th2 cells. J. Proteome Res.4, 400–409 (2005).
  • Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem.76, 4951–4959 (2004).
  • Ishihama Y, Sato T, Tabata T et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol.23, 617–621 (2005).
  • Barr JR, Maggio VL, Patterson DG et al. Isotope dilution mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin. Chem.42, 1676–1682 (1996).
  • Rittenberg D. Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem.133, 737–744 (1940).
  • Gerber SA, Rush J, Stemman O et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100, 6940–6945 (2003).
  • Mayya V, Rezual K, Wu LF et al. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry – determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteomics5, 1146–1157 (2006).
  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol.21, 255–261 (2003).
  • Mann M, Ong SE, Gronborg M et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol.20 (2002).
  • Ballif BA, Roux PP, Gerber SA et al. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc. Natl Acad. Sci. USA102, 667–672 (2005).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Knight ZA, Schilling B, Row RH et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol.21, 1047–1053 (2003).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol.22, 1139–1145 (2004).
  • Gu S, Chen X. Precise proteomic identification using mass spectrometry coupled with stable isotope labeling. Analyst130, 1225–1231 (2005).
  • Zhu H, Hunter TC, Pan S et al. Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal. Chem.74, 1687–1694 (2002).
  • Ibarrola N, Kalume DE, Gronborg M et al. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem.75, 6043–6049 (2003).
  • Zhang G, Spellman DS, Skolnik EY, Neubert TA. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome Res.5, 581–588 (2006).
  • Zhang RJ, Sioma CS, Thompson RA et al. Controlling deuterium isotope effects in comparative proteomics. Anal. Chem.74, 3662–3669 (2002).
  • Ong SE, Mittler G, Mann M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods1, 119–126 (2004).
  • Zhang H, Li X, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.21, 660–666 (2003).
  • Kaji H, Saito H, Yamauchi Y et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol.21, 667–672 (2003).
  • Lill J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev.22, 182–094 (2003).
  • Bauch A, Furga GS. Charting protein complexes, signaling pathways, and networks in the immune system. Immunol. Rev.210, 187–207 (2006).
  • Kabuyama Y, Resing KA, Ahn NG. Applying proteomics to signaling networks. Curr. Opin. Genet. Dev.14, 492–498 (2004).
  • Zhu H, Snyder M. Protein chip technology. Curr. Opin. Chem. Biol.7, 55–63 (2003).
  • Montgomery MK. RNA interference: historical overview and significance. Methods Mol. Biol265, 3–21 (2004).
  • Feldhahn N, Schwering I, Lee S et al. Silencing of B cell receptor signals in human naive B cells. J. Exp. Med.196, 1291–1305 (2002).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000).
  • Fields S. High-throughput two-hybrid analysis. FEBS J.272, 5391–5399 (2005).
  • Uetz P, Dong YA, Zeretzke C et al. Herpesviral protein networks and their interaction with the human proteome. Science311, 239–242 (2006).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • Rigaut G, Shevchenko A, Rutz B et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol.17, 1030–1032 (1999).
  • Bouwmeester T, Bauch A, Ruffner H et al. A physical and functional map of the human TNF-α/NFκB signal transduction pathway. Nat. Cell Biol.6, 97–105 (2004).
  • Forler D, Kocher T, Rode M et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol.21, 89–92 (2003).
  • Oda Y, Owa T, Sato T et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem.75, 2159–2165 (2003).
  • Ranish JA, Yi EC, Leslie DM et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet.33, 349–355 (2003).
  • Hardwidge PR, Donohoe S, Aebersold R, Finlay BB. Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics6, 2174–2179 (2006).
  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. A proteomics strategy to elucidate functional proteinprotein interactions applied to EGF signaling. Nat. Biotechnol.21, 315–318 (2003).
  • Foster LJ, Rudich A, Talior I et al. Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res.5, 64–75 (2006).
  • Wang TY, Gu S, Ronni T et al. In vivo dual-tagging proteomic approach in studying signaling pathways in immune response. J. Proteome Res.4, 941–949 (2005).
  • Wang TY, Chuang TH, Ronni T et al. Flightless I homology negatively modulates the TLR pathway. J Immunol.176, 1355–1362 (2006).
  • Du Y, Gu S, Zhou J et al. The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca2+/calmodulin in the ionizing radiation induced cell cycle arrest. Mol. Cell. Proteomics5(6), 1033–1044 (2006).
  • Brand M, Ranish JA, Kummer NT et al. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat. Struct. Mol. Biol.11, 73–80 (2004).
  • Keshamouni VG, Michailidis G, Grasso CS et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res.5(5), 1143–1154 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.