198
Views
39
CrossRef citations to date
0
Altmetric
Review

Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin

, &
Pages 711-726 | Published online: 09 Jan 2014

References

  • Blackshear PJ. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans.30, 945–952 (2002).
  • Blackshear PJ, Lai WS, Kennington EA et al. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J. Biol. Chem.278, 19947–19955 (2003).
  • Cao H. Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Biochemistry43, 13724–13738 (2004).
  • Worthington MT, Pelo JW, Sachedina MA et al. RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J. Biol. Chem.277, 48558–48564 (2002).
  • Hau HH, Walsh RJ, Ogilvie RL et al. Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J. Cell Biochem.100, 1477–1492 (2007).
  • Raghavan A, Robison RL, McNabb J et al. HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J. Biol. Chem.276, 47958–47965 (2001).
  • Ditargiani RC, Lee SJ, Wassink S, Michel SL. Functional characterization of iron-substituted tristetraprolin-2D (TTP-2D, NUP475–2D): RNA binding affinity and selectivity. Biochemistry45, 13641–13649 (2006).
  • Cao H, Dzineku F, Blackshear PJ. Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-α mRNA and serve as a substrate for mitogen-activated protein kinases. Arch. Biochem. Biophys.412, 106–120 (2003).
  • Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science281, 1001–1005 (1998).
  • Lai WS, Carballo E, Strum JR et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor α mRNA. Mol. Cell. Biol.19, 4311–4323 (1999).
  • Carballo E, Lai WS, Blackshear PJ. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood95, 1891–1899 (2000).
  • Carballo E, Cao H, Lai WS et al. Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J. Biol. Chem.276, 42580–42587 (2001).
  • Sawaoka H, Dixon DA, Oates JA, Boutaud O. Tristetraprolin binds to the 3´-untranslated region of cyclooxygenase-2 mRNA. A polyadenylation variant in a cancer cell line lacks the binding site. J. Biol. Chem.278, 13928–13935 (2003).
  • Sully G, Dean JL, Wait R et al. Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Biochem. J.377, 629–639 (2004).
  • Ogilvie RL, Abelson M, Hau HH et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J. Immunol.174, 953–961 (2005).
  • Frasca D, Landin AM, Alvarez JP et al. Tristetraprolin, a negative regulator of mRNA stability, is increased in old B cells and is involved in the degradation of e47 mRNA. J. Immunol.179, 918–927 (2007).
  • Phillips K, Kedersha N, Shen L, Blackshear PJ, Anderson P. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl Acad. Sci. USA101, 2011–2016 (2004).
  • Taylor GA, Carballo E, Lee DM et al. A pathogenetic role for TNF α in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity4, 445–454 (1996).
  • Sauer I, Schaljo B, Vogl C et al. Interferons limit inflammatory responses by induction of tristetraprolin. Blood107, 4790–4797 (2006).
  • Anderson P, Phillips K, Stoecklin G, Kedersha N. Post-transcriptional regulation of proinflammatory proteins. J. Leukoc. Biol.76, 42–47 (2004).
  • Blackshear PJ, Phillips RS, Vazquez-Matias J, Mohrenweiser H. Polymorphisms in the genes encoding members of the tristetraprolin family of human tandem CCCH zinc finger proteins. Prog. Nucleic Acid Res. Mol. Biol.75, 43–68 (2003).
  • Carrick DM, Lai WS, Blackshear PJ. The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res. Ther.6, 248–264 (2004).
  • Seko Y, Cole S, Kasprzak W, Shapiro BA, Ragheb JA. The role of cytokine mRNA stability in the pathogenesis of autoimmune disease. Autoimmun. Rev.5, 299–305 (2006).
  • Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ. Novel mRNA Targets for Tristetraprolin (TTP) Identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol. Cell Biol.26, 9196–9208 (2006).
  • Thalmeier A, Dickmann M, Giegling I et al. Gene expression profiling of post-mortem orbitofrontal cortex in violent suicide victims. Int. J. Neuropsychopharmacol.1–12 (2007) (Epub ahead of print).
  • Bouchard L, Tchernof A, Deshaies Y et al. ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics. Obes. Surg.17, 372–382 (2007).
  • Lai WS, Stumpo DJ, Blackshear PJ. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J. Biol. Chem.265, 16556–16563 (1990).
  • DuBois RN, McLane MW, Ryder K, Lau LF, Nathans D. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J. Biol. Chem.265, 19185–19191 (1990).
  • Varnum BC, Lim RW, Kujubu DA et al. Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary- response TIS genes in both proliferating and terminally differentiated myeloid cells. Mol. Cell. Biol.9, 3580–3583 (1989).
  • Varnum BC, Lim RW, Sukhatme VP, Herschman HR. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene4, 119–120 (1989).
  • Blackshear PJ, Phillips RS, Ghosh S et al. Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol. Reprod.73, 297–307 (2005).
  • Brooks SA, Connolly JE, Rigby WFC. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J. Immunol.172, 7263–7271 (2004).
  • Cao H, Tuttle JS, Blackshear PJ. Immunological characterization of tristetraprolin as a low abundance, inducible, stable cytosolic protein. J. Biol. Chem.279, 21489–21499 (2004).
  • Chen YL, Huang YL, Lin NY et al. Differential regulation of ARE-mediated TNFα and IL-1β mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem. Biophys. Res. Commun.346, 160–168 (2006).
  • Rigby WF, Roy K, Collins J et al. Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function. J. Immunol.174, 7883–7893 (2005).
  • Stoecklin G, Stubbs T, Kedersha N et al. MK2-induced tristetraprolin:14–3–3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J.23, 1313–1324 (2004).
  • Zhu W, Brauchle MA, Di Padova F et al. Gene suppression by tristetraprolin and release by the p38 pathway. Am. J. Physiol. Lung Cell. Mol. Physiol.281, 499–508 (2001).
  • Cao H, Anderson RA. Insulin regulation of tristetraprolin family and related mRNA levels in mouse 3T3-L1 adipocytes. FASEB J.21, A281 (2007) (Abstract).
  • Lin NY, Lin CT, Chen YL, Chang CJ. Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. FEBS J.274, 867–878 (2007).
  • Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol. Cell Biol.26, 9126–9135 (2006).
  • Cousins RJ, Blanchard RK, Popp MP et al. A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc. Natl Acad. Sci. USA100, 6952–6957 (2003).
  • Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch. Biochem. Biophys.459, 214–222 (2007).
  • Cao H, Kelly MA, Kari F et al. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J. Inflamm. (Lond.)4, 1–12 (2007).
  • Esclatine A, Taddeo B, Roizman B. Herpes simplex virus 1 Induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-rich RNAs. J. Virol.78, 8582–8592 (2004).
  • Taylor GA, Thompson MJ, Lai WS, Blackshear PJ. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J. Biol. Chem.270, 13341–13347 (1995).
  • Chrestensen CA, Schroeder MJ, Shabanowitz J et al. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14–3–3 binding. J. Biol. Chem.279, 10176–10184 (2004).
  • Mahtani KR, Brook M, Dean JL et al. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor α mRNA stability. Mol. Cell. Biol.21, 6461–6469 (2001).
  • Ming XF, Stoecklin G, Lu M, Looser R, Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol. Cell. Biol.21, 5778–5789 (2001).
  • Cao H, Lin R. Phosphorylation of recombinant tristetraprolin in vitro. Protein J. (2008) (In Press).
  • Taylor GA, Thompson MJ, Lai WS, Blackshear PJ. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol. Endocrinol.10, 140–146 (1996).
  • Johnson BA, Stehn JR, Yaffe MB, Blackwell TK. Cytoplasmic localization of tristetraprolin involves 14–3–3-dependent and -independent mechanisms. J. Biol. Chem.277, 18029–18036 (2002).
  • Hitti E, Iakovleva T, Brook M et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell Biol.26, 2399–2407 (2006).
  • Brook M, Tchen CR, Santalucia T et al. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol. Cell Biol.26, 2408–2418 (2006).
  • Sun L, Stoecklin G, Van WS et al. Tristetraprolin (TTP)-14–3–3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-α mRNA. J. Biol Chem.282, 3766–3777 (2007).
  • Cao H, Deterding LJ, Venable JD et al. Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochem. J.394, 285–297 (2006).
  • Rangel-Aldao R, Kupiec JW, Rosen OM. Resolution of the phosphorylated and dephosphorylated cAMP-binding proteins of bovine cardiac muscle by affinity labeling and two-dimensional electrophoresis. J. Biol. Chem.254, 2499–2508 (1979).
  • Rodriguez P, Bhogal MS, Colyer J. Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J. Biol. Chem.278, 38593–38600 (2003).
  • Kislinger T, Emili A. Multidimensional protein identification technology: current status and future prospects. Expert. Rev. Proteomics2, 27–39 (2005).
  • MacCoss MJ, McDonald WH, Saraf A et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA99, 7900–7905 (2002).
  • Venable JD, Yates JR 3rd. Impact of ion trap tandem mass spectra variability on the identification of peptides. Anal. Chem.76, 2928–2937 (2004).
  • Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucl. Acids Res.31, 3635–3641 (2003).
  • Yaffe MB, Leparc GG, Lai J et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol.19, 348–353 (2001).
  • Hofmann F, Beavo JA, Bechtel PJ, Krebs EG. Comparison of adenosine 3´:5´-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J. Biol. Chem.250, 7795–7801 (1975).
  • Tchen CR, Brook M, Saklatvala J, Clark AR. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J. Biol. Chem.279, 32393–32400 (2004).
  • Chen CY, Gherzi R, Ong SE et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell107, 451–464 (2001).
  • Carman JA, Nadler SG. Direct association of tristetraprolin with the nucleoporin CAN/Nup214. Biochem. Biophys. Res. Commun.315, 445–449 (2004).
  • Twizere JC, Kruys V, Lefebvre L et al. Interaction of retroviral Tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor-alpha expression. J. Natl Cancer Inst.95, 1846–1859 (2003).
  • Franks TM, Lykke-Andersen J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev.21, 719–735 (2007).
  • Jing Q, Huang S, Guth S et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell120, 623–634 (2005).
  • Puig S, Askeland E, Thiele DJ. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell120, 99–110 (2005).
  • Michel SL, Guerrerio AL, Berg JM. Selective RNA binding by a single CCCH zinc-binding domain from Nup475 (tristetraprolin). Biochemistry42, 4626–4630 (2003).
  • Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol.11, 257–264 (2004).
  • Stumpo DJ, Byrd NA, Phillips RS et al. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the tristetraprolin family. Mol. Cell. Biol.24, 6445–6455 (2004).
  • Ramos SB, Stumpo DJ, Kennington EA et al. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development131, 4883–4893 (2004).
  • Schmidlin M, Lu M, Leuenberger SA et al. The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J.23, 4760–4769 (2004).
  • Benjamin D, Schmidlin M, Min L, Gross B, Moroni C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell Biol.26, 9497–9507 (2006).
  • Taylor GA, Lai WS, Oakey RJ et al. The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucl. Acids Res.19, 3454 (1991).
  • Kaneda N, Oshima M, Chung SY, Guroff G. Sequence of a rat TIS11 cDNA, an immediate early gene induced by growth factors and phorbol esters. Gene118, 289–291 (1992).
  • Lai WS, Thompson MJ, Taylor GA, Liu Y, Blackshear PJ. Promoter analysis of Zfp-36, the mitogen-inducible gene encoding the zinc finger protein tristetraprolin. J. Biol. Chem.270, 25266–25272 (1995).
  • Dvorak CM, Hyland KA, Machado JG et al. Gene discovery and expression profiling in porcine Peyer’s patch. Vet. Immunol. Immunopathol.105, 301–315 (2005).
  • Lindblad–Toh K, Wade CM, Mikkelsen TS et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature438, 803–819 (2005).
  • Mello CC, Schubert C, Draper B et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature382, 710–712 (1996).
  • Schubert CM, Lin R, de Vries CJ, Plasterk RHA, Priess JR. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell.5, 671–682 (2000).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.