83
Views
13
CrossRef citations to date
0
Altmetric
Review

Identification of accessible human cancer biomarkers using ex vivo chemical proteomic strategies

, &
Pages 727-739 | Published online: 09 Jan 2014

References

  • Silacci M, Brack S, Schirru G et al. Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics5(9), 2340–2350 (2005).
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23(9), 1147–1157 (2005).
  • Collins J, Horn N, Wadenback J, Szardenings M. Cosmix-plexing: a novel recombinatorial approach for evolutionary selection from combinatorial libraries. J. Biotechnol.74(4), 317–338 (2001).
  • Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu. Rev. Med.56, 555–583 (2005).
  • Melkko S, Scheuermann J, Dumelin CE, Neri D. Encoded self-assembling chemical libraries. Nat. Biotechnol.22(5), 568–574 (2004).
  • Chatterjee SK, Zetter BR. Cancer biomarkers: knowing the present and predicting the future. Future Oncol.1(1), 37–50 (2005).
  • Haber DA, Settleman J. Cancer: drivers and passengers. Nature446(7132), 145–146 (2007).
  • Neve RM, Chin K, Fridlyand J et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell10(6), 515–527 (2006).
  • Hondermarck H. Breast cancer: when proteomics challenges biological complexity. Mol. Cell. Proteomics2(5), 281–291 (2003).
  • Ornstein DK, Gillespie JW, Paweletz CP et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis21(11), 2235–2242 (2000).
  • Celis A, Rasmussen HH, Celis P et al. Short-term culturing of low-grade superficial bladder transitional cell carcinomas leads to changes in the expression levels of several proteins involved in key cellular activities. Electrophoresis20(2), 355–361 (1999).
  • Gupta PB, Kuperwasser C. Disease models of breast cancer. Drug Discov. Today1(1), 9–16 (2004).
  • Jessani N, Humphrey M, McDonald WH et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl Acad. Sci. USA101(38), 13756–13761 (2004).
  • Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell7(6), 513–520 (2005).
  • Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer7(2), 139–147 (2007).
  • Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis21(6), 1054–1070 (2000).
  • Jain M, Venkatraman G, Batra SK. Cell-penetrating peptides and antibodies: a new direction for optimizing radioimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging34(7), 973–977 (2007).
  • Hu M, Chen P, Wang J, Scollard DA, Vallis KA, Reilly RM. 123I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21WAF-1/Cip-1. Eur. J. Nucl. Med. Mol. Imaging34(3), 368–377 (2007).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24(8), 971–983 (2006).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1(11), 845–867 (2002).
  • Jacobs JM, Adkins JN, Qian WJ et al. Utilizing human blood plasma for proteomic biomarker discovery. J. Proteome Res.4(4), 1073–1085 (2005).
  • Granger J, Siddiqui J, Copeland S, Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics5(18), 4713–4718 (2005).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Rosty C, Christa L, Kuzdzal S et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res.62(6), 1868–1875 (2002).
  • Celis JE, Gromov P, Cabezon T et al. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol. Cell. Proteomics3(4), 327–344 (2004).
  • Ruhlen RL, Sauter ER. Proteomics of nipple aspirate fluid, breast cyst fluid, milk, and colostrum. Proteomics1(8), 845–852 (2007).
  • Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science274(5289), 998–1001 (1996).
  • Baker H, Patel V, Molinolo AA et al. Proteome-wide analysis of head and neck squamous cell carcinomas using laser-capture microdissection and tandem mass spectrometry. Oral Oncol.41(2), 183–199 (2005).
  • Li C, Hong Y, Tan YX et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol. Cell. Proteomics3(4), 399–409 (2004).
  • Nettikadan S, Radke K, Johnson J et al. Detection and quantification of protein biomarkers from fewer than 10 cells. Mol. Cell. Proteomics5(5), 895–901 (2006).
  • Tammen H, Kreipe H, Hess R et al. Expression profiling of breast cancer cells by differential peptide display. Breast Cancer Res. Treat.79(1), 83–93 (2003).
  • Pucci-Minafra I, Cancemi P, Marabeti MR et al. Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts. Proteomics1(1), 118–129 (2007).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Saghatelian A, Cravatt BF. Assignment of protein function in the postgenomic era. Nat. Chem. Biol.1(3), 130–142 (2005).
  • Roesli C, Neri D, Rybak J-N. In vivo protein biotinylation and sample preparation for the proteomic identification of organ- and disease-specific antigens accessible from the vasculature. Nat. Protocols1(1), 192–199 (2006).
  • Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat. Methods2(4), 291–298 (2005).
  • Castronovo V, Waltregny D, Kischel P et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol. Cell. Proteomics5(11), 2083–2091 (2006).
  • Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr. Opin. Pharmacol.5(5), 543–549 (2005).
  • Zardi L, Neri D. Affinity reagents against tumour-associated extracellular molecules and newforming vessels. Adv. Drug Deliv. Rev.31(1–2), 43–52 (1998).
  • Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. Int. J. Cancer118(6), 1331–1339 (2006).
  • Silacci M, Brack SS, Spath N et al. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel.19(10), 471–478 (2006).
  • Castronovo V, Kischel P, Guillonneau F et al. Identification of specific reachable molecular targets in human breast cancer using a versatile ex vivo proteomic method. Proteomics7(8), 1188–1196 (2007).
  • Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M. The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis26(3), 501–510 (2005).
  • Wulfkuhle JD, Sgroi DC, Krutzsch H et al. Proteomics of human breast ductal carcinoma in situ. Cancer Res.62(22), 6740–6749 (2002).
  • Bertucci F, Birnbaum D, Goncalves A. Proteomics of breast cancer: principles and potential clinical applications. Mol. Cell. Proteomics5(10), 1772–1786 (2006).
  • Liu H, Lin D, Yates JR III. Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques32(4), 898–900, 902 passim (2002).
  • Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Olsen JV, de Godoy LM, Li G et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics4(12), 2010–2021 (2005).
  • Schmidt A, Aebersold R. High-accuracy proteome maps of human body fluids. Genome Biol.7(11), 242 (2006).
  • de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol.7(8), R72 (2006).
  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins including a large proportion of membranes proteins. Genome Biol.7(9), R80 (2006).
  • Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol.7(5), R40 (2006).
  • Taylor CF, Paton NW, Lilley KS et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol.25(8), 887–893 (2007).
  • van der Merwe DE, Oikonomopoulou K, Marshall J, Diamandis EP. Mass spectrometry: uncovering the cancer proteome for diagnostics. Adv. Cancer Res.96, 23–50 (2007).
  • Rollin D, Whistler T, Vernon SD. Laboratory methods to improve SELDI peak detection and quantitation. Proteome Sci.5, 9 (2007).
  • Wilkins MR, Appel RD, Van Eyk JE et al. Guidelines for the next 10 years of proteomics. Proteomics6(1), 4–8 (2006).
  • Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A. The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol. Cell. Proteomics3(6), 531–533 (2004).
  • Durr E, Yu J, Krasinska KM et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol.22(8), 985–992 (2004).
  • Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods2(9), 667–675 (2005).
  • Annesley TM. Ion suppression in mass spectrometry. Clin. Chem.49(7), 1041–1044 (2003).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • Miyagi M, Rao KC. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom. Rev.26(1), 121–136 (2007).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics5(1), 4–15 (2005).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.389(4), 1017–1031 (2007).
  • Wan WH, Fortuna MB, Furmanski P. A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J. Immunol. Methods103(1), 121–129 (1987).
  • Kononen J, Bubendorf L, Kallionimeni A et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med.4(7), 844–847 (1998).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics5(4), 573–588 (2006).
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science301(5641), 1884–1886 (2003).
  • Service RF. American Chemical Society meeting. Tiny transistors scout for cancer. Science300(5617), 242–243 (2003).
  • Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J. Clin. Oncol.25(23), 3525–3533 (2007).
  • Boyd CD, Pierce RA, Schwarzbauer JE, Doege K, Sandell LJ. Alternate exon usage is a commonly used mechanism for increasing coding diversity within genes coding for extracellular matrix proteins. Matrix13(6), 457–469 (1993).
  • Zardi L, Carnemolla B, Siri A et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J.6(8), 2337–2342 (1987).
  • Carnemolla B, Neri D, Castellani P et al. Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer68(3), 397–405 (1996).
  • Neri D, Carnemolla B, Nissim A et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat. Biotechnol.15(12), 1271–1275 (1997).
  • Borsi L, Balza E, Bestagno M et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer102(1), 75–85 (2002).
  • Santimaria M, Moscatelli G, Viale GL et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res.9(2), 571–579 (2003).
  • Neri D, Bicknell R. Tumour vascular targeting. Nat. Rev. Cancer5(6), 436–446 (2005).
  • Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov.5(2), 147–159 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.