213
Views
61
CrossRef citations to date
0
Altmetric
Review

Ubiquitin–proteasome system dysfunction in Parkinson’s disease: current evidence and controversies

Pages 769-781 | Published online: 09 Jan 2014

References

  • Dorsey ER, Constantinescu R, Thompson JP et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology68(5), 384–386 (2007).
  • Litvan I, Halliday G, Hallett M et al. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J. Neuropathol. Exp. Neurol.66(4), 251–257 (2007).
  • Braak H, Del Tredici K, Rub U et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • Jellinger KA. Post mortem studies in Parkinson’s disease – is it possible to detect brain areas for specific symptoms? J. Neural Transm. Suppl.56, 1–29 (1999).
  • Douglas MR, Lewthwaite AJ, Nicholl DJ. Genetics of Parkinson’s disease and parkinsonism. Expert Rev. Neurother.7(6), 657–666 (2007).
  • Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest.116(7), 1744–1754 (2006).
  • Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays22(5), 442–451 (2000).
  • Hershko A, Ciechanover A. The ubiquitin system. Ann. Rev. Biochem.67, 425–479 (1998).
  • Pickart CM. Mechanisms underlying ubiquitination. Ann. Rev. Biochem.70, 503–533 (2001).
  • Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21(8), 921–926 (2003).
  • Pickart CM. Ubiquitin in chains. Trends Biochem. Sci.25(11), 544–548 (2000).
  • Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science315(5809), 201–205 (2007).
  • Alam ZI, Daniel SE, Lees AJ et al. A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem.69(3), 1326–1329 (1997).
  • Forno LS. The Lewy body in Parkinson’s disease. Adv. Neurol.45, 35–43 (1987).
  • Lewy FH. Paralysis agitans. I. Pathologische Anatomie. Lewandowski M (Ed.). Springer, Berlin, Germany 920–933 (1912).
  • Kwak S, Masaki T, Ishiura S, Sugita H. Multicatalytic proteinase is present in Lewy bodies and neurofibrillary tangles in diffuse Lewy body disease brains. Neurosci. Lett.128(1), 21–24 (1991).
  • Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol. (Berl.)75(4), 345–353 (1988).
  • Fergusson J, Landon M, Lowe J et al. Pathological lesions of Alzheimer’s disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome. Neurosci. Lett.219(3), 167–170 (1996).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392(6676), 605–608 (1998).
  • Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem.275(46), 35661–35664 (2000).
  • Shimura H, Hattori N, Kubo S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet.25(3), 302–305 (2000).
  • Zhang Y, Gao J, Chung KK et al. Parkin functions as an E2-dependent ubiquitin–protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA97(24), 13354–13359 (2000).
  • Leroy E, Boyer R, Auburger G et al. The ubiquitin pathway in Parkinson’s disease. Nature395(6701), 451–452 (1998).
  • Wilkinson KD. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J.11(14), 1245–1256 (1997).
  • Spillantini MG, Schmidt ML, Lee VM et al. α-synuclein in Lewy bodies. Nature388(6645), 839–840 (1997).
  • Tanaka Y, Engelender S, Igarashi S et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet.10(9), 919–926 (2001).
  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci.21(24), 9549–9560 (2001).
  • Chen L, Thiruchelvam MJ, Madura K, Richfield EK. Proteasome dysfunction in aged human α-synuclein transgenic mice. Neurobiol. Dis.23(1), 120–126 (2006).
  • Singleton AB, Farrer M, Johnson J et al. alpha-synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp. Neurol.179(1), 38–46 (2003).
  • McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett.297(3), 191–194 (2001).
  • Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG. Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem.278(45), 44405–44411 (2003).
  • Furukawa Y, Vigouroux S, Wong H et al. Brain proteasomal function in sporadic Parkinson’s disease and related disorders. Ann. Neurol.51(6), 779–782 (2002).
  • Grunblatt E, Mandel S, Jacob-Hirsch J et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin–proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural. Transm.111(12), 1543–1573 (2004).
  • Reinheckel T, Ullrich O, Sitte N, Grune T. Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch. Biochem. Biophys.377(1), 65–68 (2000).
  • Bulteau AL, Lundberg KC, Humphries KM et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J. Biol. Chem.276(32), 30057–30063 (2001).
  • Keller JN, Dimayuga E, Chen Q et al. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int. J. Biochem. Cell Biol.36(12), 2376–2391 (2004).
  • Zeng BY, Medhurst AD, Jackson M, Rose S, Jenner P. Proteasomal activity in brain differs between species and brain regions and changes with age. Mech. Ageing Dev.126(6–7), 760–766 (2005).
  • Betarbet R, Canet-Aviles RM, Sherer TB et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiol. Dis.22(2), 404–420 (2006).
  • Wang XF, Li S, Chou AP, Bronstein JM. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol. Dis.23(1), 198–205 (2006).
  • Wang C, Ko HS, Thomas B et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum. Mol. Genet.14(24), 3885–3897 (2005).
  • Fornai F, Schluter OM, Lenzi P et al. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin–proteasome system and α-synuclein. Proc. Natl Acad. Sci. USA102(9), 3413–3418 (2005).
  • Zeng BY, Iravani MM, Lin ST et al. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome. Eur. J. Neurosci.23(7), 1766–1774 (2006).
  • Zafar KS, Inayat–Hussain SH, Ross D. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132. J. Neurochem.102(3), 913–921 (2007).
  • Rideout HJ, Lang-Rollin IC, Savalle M, Stefanis L. Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions, but do not up-regulate iHSP70, following proteasomal inhibition. J. Neurochem.93(5), 1304–1313 (2005).
  • Biasini E, Fioriti L, Ceglia I et al. Proteasome inhibition and aggregation in Parkinson’s disease: a comparative study in untransfected and transfected cells. J. Neurochem.88(3), 545–553 (2004).
  • McNaught KS, Mytilineou C, Jnobaptiste R et al. Impairment of the ubiquitin–proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem.81(2), 301–306 (2002).
  • Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci.3(12), 932–942 (2002).
  • Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res.55(6), 659–665 (1999).
  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat. Med.11(11), 1214–1221 (2005).
  • Pawlyk AC, Giasson BI, Sampathu DM et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J. Biol. Chem.278(48), 48120–48128 (2003).
  • Chung KK, Thomas B, Li X et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science304(5675), 1328–1331 (2004).
  • Yao D, Gu Z, Nakamura T et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA101(29), 10810–10814 (2004).
  • Wong ES, Tan JM, Wang C et al. Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J. Biol. Chem.282(16), 12310–12318 (2007).
  • Feany MB, Pallanck LJ. Parkin: a multipurpose neuroprotective agent? Neuron38(1), 13–16 (2003).
  • Tsai YC, Fishman PS, Thakor NV, Oyler GA. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem.278(24), 22044–22055 (2003).
  • Petrucelli L, O’Farrell C, Lockhart PJ et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron36(6), 1007–1019 (2002).
  • Cookson MR, Lockhart PJ, McLendon C et al. RING finger 1 mutations in Parkin produce altered localization of the protein. Hum. Mol. Genet.12(22), 2957–2965 (2003).
  • Gu WJ, Corti O, Araujo F et al. The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates. Neurobiol. Dis.14(3), 357–364 (2003).
  • Wang C, Tan JM, Ho MW et al. Alterations in the solubility and intracellular localization of parkin by several familial Parkinson’s disease-linked point mutations. J. Neurochem.93(2), 422–431 (2005).
  • Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem.278(47), 47199–47208 (2003).
  • Fornai F, Lenzi P, Gesi M et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J. Neurosci.23(26), 8955–8966 (2003).
  • McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann. Neurol.56(1), 149–162 (2004).
  • Snyder H, Mensah K, Theisler C et al. Aggregated and monomeric alpha-synuclein bind to the S6´ proteasomal protein and inhibit proteasomal function. J. Biol. Chem.278(14), 11753–11759 (2003).
  • Choi P, Snyder H, Petrucelli L et al. SEPT5_v2 is a parkin-binding protein. Brain Res. Mol. Brain Res.117(2), 179–189 (2003).
  • Imai Y, Soda M, Inoue H et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell105(7), 891–902 (2001).
  • Staropoli JF, McDermott C, Martinat C et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron37(5), 735–749 (2003).
  • Ko HS, von Coelln R, Sriram SR et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci.25(35), 7968–7978 (2005).
  • Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J. Biol. Chem.281(24), 16193–16196 (2006).
  • Hoglinger GU, Carrard G, Michel PP et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J. Neurochem.86(5), 1297–1307 (2003).
  • Jha N, Kumar MJ, Boonplueang R, Andersen JK. Glutathione decreases in dopaminergic PC12 cells interfere with the ubiquitin protein degradation pathway: relevance for Parkinson’s disease? J. Neurochem.80(4), 555–561 (2002).
  • Jesenberger V, Jentsch S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol.3(2), 112–121 (2002).
  • Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature387(6630), 299–303 (1997).
  • Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA98(15), 8662–8667 (2001).
  • Breitschopf K, Zeiher AM, Dimmeler S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J. Biol. Chem.275(28), 21648–21652 (2000).
  • Piccioli P, Porcile C, Stanzione S et al. Inhibition of nuclear factor-κB activation induces apoptosis in cerebellar granule cells. J. Neurosci. Res.66(6), 1064–1073 (2001).
  • Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ.13(6), 951–961 (2006).
  • Mihara M, Erster S, Zaika A et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell11(3), 577–590 (2003).
  • Chipuk JE, Kuwana T, Bouchier-Hayes L et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science303(5660), 1010–1014 (2004).
  • Nakaso K, Yoshimoto Y, Yano H, Takeshima T, Nakashima K. p53-mediated mitochondrial dysfunction by proteasome inhibition in dopaminergic SH-SY5Y cells. Neurosci. Lett.354(3), 213–216 (2004).
  • Nair VD, McNaught KS, Gonzalez-Maeso J, Sealfon SC, Olanow CW. p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J. Biol. Chem.281(51), 39550–39560 (2006).
  • Li X, Yang D, Li L et al. Proteasome inhibitor lactacystin disturbs the intracellular calcium homeostasis of dopamine neurons in ventral mesencephalic cultures. Neurochem. Int.50(7–8), 959–965 (2007).
  • Paschen W. Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res. Bull.53(4), 409–413 (2000).
  • McNaught KS, Bjorklund LM, Belizaire R et al. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport13(11), 1437–1441 (2002).
  • Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci. Lett.380(1–2), 93–98 (2005).
  • Bove J, Zhou C, Jackson-Lewis V et al. Proteasome inhibition and Parkinson’s disease modeling. Ann. Neurol.60(2), 260–264 (2006).
  • Kordower JH, Kanaan NM, Chu Y et al. Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann. Neurol.60(2), 264–268 (2006).
  • Manning-Bog AB, Reaney SH, Chou VP et al. Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann. Neurol.60(2), 256–260 (2006).
  • Schapira AH, Cleeter MW, Muddle JR et al. Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons. Ann. Neurol.60(2), 253–255 (2006).
  • Zeng BY, Bukhatwa S, Hikima A, Rose S, Jenner P. Reproducible nigral cell loss after systemic proteasomal inhibitor administration to rats. Ann. Neurol.60(2), 248–252 (2006).
  • Beal F, Lang A. The proteasomal inhibition model of Parkinson’s disease: “boon or bust”? Ann. Neurol.60(2), 158–161 (2006).
  • McNaught KS, Olanow CW. Proteasome inhibitor-induced model of Parkinson’s disease. Ann. Neurol.60(2), 243–247 (2006).
  • Landau AM, Kouassi E, Siegrist-Johnstone R, Desbarats J. Proteasome inhibitor model of Parkinson’s disease in mice is confounded by neurotoxicity of the ethanol vehicle. Mov. Disord.22(3), 403–407 (2007).
  • Donohue TM Jr, Kharbanda KK, Casey CA, Nanji AA. Decreased proteasome activity is associated with increased severity of liver pathology and oxidative stress in experimental alcoholic liver disease. Alcohol Clin. Exp. Res.28(8), 1257–1263 (2004).
  • Goldberg MS, Fleming SM, Palacino JJ et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem.278(44), 43628–43635 (2003).
  • Itier JM, Ibanez P, Mena MA et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet.12(18), 2277–2291 (2003).
  • Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl Acad. Sci. USA102(6), 2174–2179 (2005).
  • Von Coelln R, Thomas B, Savitt JM et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc. Natl Acad. Sci. USA101(29), 10744–10749 (2004).
  • Palacino JJ, Sagi D, Goldberg MS et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem.279(18), 18614–18622 (2004).
  • Darios F, Corti O, Lucking CB et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum. Mol. Genet.12(5), 517–526 (2003).
  • Kuroda Y, Mitsui T, Kunishige M, Matsumoto T. Parkin affects mitochondrial function and apoptosis in neuronal and myogenic cells. Biochem. Biophys. Res. Commun.348(3), 787–793 (2006).
  • Perez FA, Curtis WR, Palmiter RD. Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity. BMC Neurosci.6, 71 (2005).
  • Casarejos MJ, Menendez J, Solano RM et al. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J. Neurochem.97(4), 934–946 (2006).
  • Lockhart PJ, O’Farrell CA, Farrer MJ. It’s a double knock-out! The quaking mouse is a spontaneous deletion of parkin and parkin co-regulated gene (PACRG). Mov. Disord.19(1), 101–104 (2004).
  • Lorenzetti D, Antalffy B, Vogel H et al. The neurological mutant quaking(viable) is Parkin deficient. Mamm. Genome15(3), 210–217 (2004).
  • Saigoh K, Wang YL, Suh JG et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet.23(1), 47–51 (1999).
  • Greene JC, Whitworth AJ, Kuo I et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA100(7), 4078–4083 (2003).
  • Cha GH, Kim S, Park J et al. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl Acad. Sci. USA102(29), 10345–10350 (2005).
  • Whitworth AJ, Theodore DA, Greene JC et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl Acad. Sci. USA102(22), 8024–8029 (2005).
  • Pesah Y, Pham T, Burgess H et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development131(9), 2183–2194 (2004).
  • Wang C, Lu R, Ouyang X et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci.27(32) 8563–8570 (2007).
  • Doss-Pepe EW, Chen L, Madura K. α-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J. Biol. Chem.280(17), 16619–16624 (2005).
  • Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O. Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum. Mol. Genet.15(13), 2059–2075 (2006).
  • Lim KL, Chew KC, Tan JM et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci.25(8), 2002–2009 (2005).
  • Matsuda N, Kitami T, Suzuki T et al. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J. Biol. Chem.281(6), 3204–3209 (2006).
  • Arnason T, Ellison MJ. Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol. Cell. Biol.14(12), 7876–7883 (1994).
  • Fisk HA, Yaffe MP. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J. Cell. Biol.145(6), 1199–1208 (1999).
  • Galan JM, Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J.16(19), 5847–5854 (1997).
  • Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol.15(3), 1265–1273 (1995).
  • Wang C, Deng L, Hong M et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412(6844), 346–351 (2001).
  • Fallon L, Belanger CM, Corera AT et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell. Biol.8(8), 834–842 (2006).
  • Olzmann JA, Li L, Chudaev MV et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell. Biol.178(6), 1025–1038 (2007).
  • Hayashi S, Wakabayashi K, Ishikawa A et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov. Disord.15(5), 884–888 (2000).
  • Mori H, Kondo T, Yokochi M et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology51(3), 890–892 (1998).
  • Takahashi H, Ohama E, Suzuki S et al. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology44(3 Pt 1), 437–441 (1994).
  • Lim KL, Dawson VL, Dawson TM. Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson’s and other conformational diseases? Neurobiol. Aging27(4), 524–529 (2006).
  • Fortun J, Dunn WA Jr, Joy S, Li J, Notterpek L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J. Neurosci.23(33), 10672–10680 (2003).
  • Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell. Biol.10(12), 524–530 (2000).
  • Anglade P, Vyas S, Javoy–Agid F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol.12(1), 25–31 (1997).
  • Cuervo AM. Autophagy in neurons: it is not all about food. Trends Mol. Med.12(10), 461–464 (2006).
  • Levine B, Yuan J. Autophagy in cell death: an innocent convict? J. Clin. Invest.115(10), 2679–2688 (2005).
  • Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441(7095), 880–884 (2006).
  • Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441(7095), 885–889 (2006).
  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. α-synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem.278(27), 25009–25013 (2003).
  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science305(5688), 1292–1295 (2004).
  • Ramirez A, Heimbach A, Grundemann J et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet.38(10), 1184–1191 (2006).
  • Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med.351(19), 1972–1977 (2004).
  • Feany MB. New genetic insights into Parkinson’s disease. N. Engl. J. Med.351(19), 1937–1940 (2004).
  • Pandey UB, Nie Z, Batlevi Y et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature447(7146), 859–863 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.