131
Views
19
CrossRef citations to date
0
Altmetric
Review

Kinase signaling pathways as potential targets in the treatment of Parkinson’s disease

&
Pages 783-792 | Published online: 09 Jan 2014

References

  • Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann. NY Acad. Sci.991, 1–14 (2003).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science276(5321), 2045–2047 (1997).
  • Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature388(6645), 839–840 (1997).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392(6676), 605–608 (1998).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299(5604), 256–259 (2003).
  • Canet-Aviles RM, Wilson MA, Miller DW et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA101(24), 9103–9108 (2004).
  • Hod Y, Pentyala SN, Whyard TC, El–Maghrabi MR. Identification and characterization of a novel protein that regulates RNA–protein interaction. J. Cell. Biochem.72(3), 435–444 (1999).
  • Valente EM, Salvi S, Ialongo T et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol.56(3), 336–341 (2004).
  • Paisan-Ruiz C, Jain S, Evans EW et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron44(4), 595–600 (2004).
  • Zimprich A, Biskup S, Leitner P et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron44(4), 601–607 (2004).
  • Funayama M, Hasegawa K, Ohta E et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol.57(6), 918–921 (2005).
  • Funayama M, Hasegawa K, Kowa H et al. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol.51(3), 296–301 (2002).
  • Bonifati V. Parkinson’s disease: the LRRK2-G2019S mutation: opening a novel era in Parkinson’s disease genetics. Eur. J. Hum. Genet.14(10), 1061–1062 (2006).
  • Bras JM, Guerreiro RJ, Ribeiro MH et al. G2019S dardarin substitution is a common cause of Parkinson’s disease in a Portuguese cohort. Mov. Disord.20(12), 1653–1655 (2005).
  • Ozelius LJ, Senthil G, Saunders-Pullman R et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med.354(4), 424–425 (2006).
  • Lesage S, Durr A, Tazir M et al. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N. Engl. J. Med.354(4), 422–423 (2006).
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science298(5600), 1912–1934 (2002).
  • Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci.30(3), 151–159 (2005).
  • West AB, Moore DJ, Biskup S et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA102(46), 16842–16847 (2005).
  • Greggio E, Jain S, Kingsbury A et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis.23(2), 329–341 (2006).
  • Smith WW, Pei Z, Jiang H et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci.9(10), 1231–1233 (2006).
  • MacLeod D, Dowman J, Hammond R et al. The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron52(4), 587–593 (2006).
  • Gloeckner CJ, Kinkl N, Schumacher A et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Gen.15(2), 223–232 (2006).
  • West AB, Moore DJ, Choi C et al. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Gen.16(2), 223–232 (2007).
  • Jaleel M, Nichols RJ, Deak M et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem. J.405(2), 307–317 (2007).
  • Guo L, Gandhi PN, Wang W et al. The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell. Res.313(16), 3658–3670 (2007).
  • Smith WW, Pei Z, Jiang H et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl Acad. Sci. USA102(51), 18676–18681 (2005).
  • Greggio E, Lewis PA, van der Brug MP et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J. Neurochem.102(1), 93–102 (2007).
  • Korr D, Toschi L, Donner P et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal.18(6), 910–920 (2006).
  • Ito G, Okai T, Fujino G et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry46(5), 1380–1388 (2007).
  • Lewis PA, Greggio E, Beilina A et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Comm.357(3), 668–671 (2007).
  • Li X, Tan YC, Poulose S et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J. Neurochem.103(1), 238–247 (2007).
  • Miklossy J, Qing H, Guo JP et al. Lrrk2 and chronic inflammation are linked to pallido–ponto–nigral degeneration caused by the N279K tau mutation. Acta Neuropathol.114(3), 243–254 (2007).
  • Giasson BI, Covy JP, Bonini NM et al. Biochemical and pathological characterization of Lrrk2. Ann. Neurol.59(2), 315–322 (2006).
  • Zhu X, Siedlak SL, Smith MA, Perry G, Chen SG. LRRK2 protein is a component of Lewy bodies. Ann. Neurol.60(5), 617–618; author reply 618–619 (2006).
  • Higashi S, Biskup S, West AB et al. Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res.1155, 208–219 (2007).
  • Melrose HL, Kent CB, Taylor JP et al. A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience147(4), 1047–1058 (2007).
  • Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol.17(7), 592–598 (2007).
  • Paglini G, Kunda P, Quiroga S, Kosik K, Caceres A. Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons. J. Cell Biol.143(2), 443–455 (1998).
  • White LR, Toft M, Kvam SN, Farrer MJ, Aasly JO. MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease. J. Neurosci. Res.85(6), 1288–1294 (2007).
  • Rouse J, Cohen P, Trigon S et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell78(6), 1027–1037 (1994).
  • Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene15(18), 2169–2177 (1997).
  • Fujiwara H, Hasegawa M, Dohmae N et al. alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol.4(2), 160–164 (2002).
  • Frasier M, Walzer M, McCarthy L et al. Tau phosphorylation increases in symptomatic mice overexpressing A30P alpha-synuclein. Exp. Neurol.192(2), 274–287 (2005).
  • Ahn NG, Resing KA. Cell biology. Lessons in rational drug design for protein kinases. Science308(5726), 1266–1267 (2005).
  • Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science308(5726), 1318–1321 (2005).
  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev.6(7), 541–555 (2007).
  • Walker K, Olson MF. Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr. Opin. Genet. Dev.15(1), 62–68 (2005).
  • Biskup S, Moore DJ, Celsi F et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol.60(5), 557–569 (2006).
  • Hatano T, Kubo S, Imai S et al. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum. Mol. Gen.16(6), 678–690 (2007).
  • Burke RE. Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol. Ther.114(3), 261–277 (2007).
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron39(6), 889–909 (2003).
  • Lotharius J, O’Malley KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J. Biol. Chem.275(49), 38581–38588 (2000).
  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science294(5545), 1346–1349 (2001).
  • Karunakaran S, Diwakar L, Saeed U et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by α-lipoic acid. FASEB J.21(9), 2226–2236 (2007).
  • Hunot S, Vila M, Teismann P et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA101(2), 665–670 (2004).
  • Lotharius J, Falsig J, van Beek J et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J. Neurosci.25(27), 6329–6342 (2005).
  • Maroney AC, Finn JP, Connors TJ et al. Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem.276(27), 25302–25308 (2001).
  • Saporito MS, Brown EM, Miller MS, Carswell S. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther.288(2), 421–427 (1999).
  • Bennett BL, Sasaki DT, Murray BW et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA98(24), 13681–13686 (2001).
  • Wang W, Shi L, Xie Y et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci. Res.48(2), 195–202 (2004).
  • Klein C, Grunewald A, Hedrich K. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology66(7), 1129–1130; author reply 1129–1130 (2006).
  • Zadikoff C, Rogaeva E, Djarmati A et al. Homozygous and heterozygous PINK1 mutations: considerations for diagnosis and care of Parkinson’s disease patients. Mov. Disord.21(6), 875–879 (2006).
  • Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol.6(7), 652–662 (2007).
  • Beilina A, Van Der Brug M, Ahmad R et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA102(16), 5703–5708 (2005).
  • Silvestri L, Caputo V, Bellacchio E et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum. Mol. Gen.14(22), 3477–3492 (2005).
  • Sim CH, Lio DS, Mok SS et al. C-terminal truncation and Parkinson’s disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum. Mol. Gen.15(21), 3251–3262 (2006).
  • Taymans JM, Van den Haute C, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. J. Neurochem.98(3), 951–961 (2006).
  • Hoepken HH, Gispert S, Morales B et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis.25(2), 401–411 (2007).
  • Petit A, Kawarai T, Paitel E et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem.280(40), 34025–34032 (2005).
  • Wang D, Qian L, Xiong H et al. Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc. Natl Acad. Sci. USA103(36), 13520–13525 (2006).
  • Clark IE, Dodson MW, Jiang C et al.Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature441(7097), 1162–1166 (2006).
  • Park J, Lee SB, Lee S et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature441(7097), 1157–1161 (2006).
  • Yang Y, Gehrke S, Imai Y et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA103(28), 10793–10798 (2006).
  • Greene JC, Whitworth AJ, Kuo I et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA100(7), 4078–4083 (2003).
  • Yamamoto A, Friedlein A, Imai Y et al. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J. Biol. Chem.280(5), 3390–3399 (2005).
  • Kitada T, Pisani A, Porter DR et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl Acad. Sci. USA104(27), 11441–11446 (2007).
  • Goldberg MS, Fleming SM, Palacino JJ et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem.278(44), 43628–43635 (2003).
  • Goldberg MS, Pisani A, Haburcak M et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron45(4), 489–496 (2005).
  • Pridgeon JW, Olzmann JA, Chin LS, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol.5(7), e172 (2007).
  • Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol.11(3), 297–305 (2001).
  • Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene20(33), 4457–4465 (2001).
  • Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol.21(3), 893–901 (2001).
  • Kim AH, Yano H, Cho H et al. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron35(4), 697–709 (2002).
  • Fallon L, Belanger CM, Corera AT et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol.8(8), 834–842 (2006).
  • Kim RH, Peters M, Jang Y et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer cell7(3), 263–273 (2005).
  • Yang Y, Gehrke S, Haque ME et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA102(38), 13670–13675 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.