253
Views
14
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis of Saccharomyces cerevisiae

&
Pages 793-813 | Published online: 09 Jan 2014

References

  • Pennington SR, Wilkins MR, Hochstrasser DF, Dunn MJ. Proteome analysis: from protein characterization to biological function. Trends Cell. Biol.7(4), 168–173 (1997).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19(3), 1720–1730 (1999).
  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. A sampling of the yeast proteome. Mol. Cell. Biol.19(11), 7357–7368 (1999).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Andersen JS, Wilkinson CJ, Mayor T et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature426(6966), 570–574 (2003).
  • Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Krijgsveld J, Ketting RF, Mahmoudi T et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol.21(8), 927–931 (2003).
  • Ong S-E, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics1(5), 376–386 (2002).
  • Rose K, Simona MG, Offord RE et al. A new mass-spectrometric C-terminal sequencing technique finds a similarity between γ-interferon and α2-interferon and identifies a proteolytically clipped γ-interferon that retains full antiviral activity. Biochem. J.215(2), 273–277 (1983).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics3(12), 1154–1169 (2004).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics5(1), 4–15 (2005).
  • Bisle B, Schmidt A, Scheibe B et al. Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol. Cell. Proteomics5(9), 1543–1558 (2006).
  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW. Dual inhibition of sister chromatid separation at metaphase. Cell107(6), 715–726 (2001).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods2(8), 587–589 (2005).
  • Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ. Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol. Cell. Proteomics (2007).
  • Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief. Funct. Genomic. Proteomic.4(1), 27–38 (2005).
  • Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA. Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res.2(6), 643–649 (2003).
  • Pang JX, Ginanni N, Dongre AR, Hefta SA, Opiteck GJ. Biomarker discovery in urine by proteomics. J. Proteome Res.1(2), 161–169 (2002).
  • Zhu H, Klemic JF, Chang S et al. Analysis of yeast protein kinases using protein chips. Nat. Genet.26(3), 283–289 (2000).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293(5537), 2101–2105 (2001).
  • Gavin A-C, Bösche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415(6868), 141–147 (2002).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403(6770), 623–627 (1999).
  • Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature416(6881), 653–657 (2002).
  • Peck SC. Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol.138(2), 591–599 (2005).
  • Kreil DP, Karp NA, Lilley KS. DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics20(13), 2026–2034 (2004).
  • Alban A, David SO, Bjorkesten L et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics3(1), 36–44 (2003).
  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Zieske LR. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J. Exp. Bot.57(7), 1501–1508 (2006).
  • Pham TK, Chong PK, Gan CS, Wright PC. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J. Proteome Res.5(12), 3411–3419 (2006).
  • Chong PK, Gan CS, Pham TK, Wright PC. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections. J. Proteome Res.5(5), 1232–1240 (2006).
  • Gan CS, Chong PK, Pham TK, Wright PC. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res.6(2), 821–827 (2007).
  • Perrot M, Sagliocco F, Mini T et al. Two-dimensional gel protein database of Saccharomyces cerevisiae. Electrophoresis20(11), 2280–2298 (1999).
  • Shevchenko A, Jensen ON, Podtelejnikov AV et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA93(25), 14440–14445 (1996).
  • Maillet I, Lagniel G, Perrot M, Boucherie H, Labarre J. Rapid identification of yeast proteins on two-dimensional gels. J. Biol. Chem.271(17), 10263–10270 (1996).
  • Boucherie H, Dujardin G, Kermorgant M et al. Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene–protein index. Yeast11(7), 601–613 (1995).
  • Wildgruber RRG, Drews O, Parlar H, Görg A. Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics2(6), 727–732 (2002).
  • Vido K, Spector D, Lagniel G et al. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem.276(11), 8469–8474 (2000).
  • Bro C, Regenberg B, Lagniel G et al. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J. Biol. Chem.278(34), 32141–32149 (2003).
  • Godon C, Lagniel G, Lee J et al. The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem.273(35), 22480–22489 (1998).
  • Nobel Hd, Lawrie L, Brul S et al. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast18(15), 1413–1428 (2001).
  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res.2(1), 43–50 (2003).
  • Wei J, Sun J, Yu W et al. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res.4(3), 801–808 (2005).
  • Pratt JM, Robertson DHL, Gaskell SJ et al. Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics2(2), 157–163 (2002).
  • Pratt JM, Petty J, Riba-Garcia I et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics1(8), 579–591 (2002).
  • Berger SJ, Lee SW, Anderson GA et al. High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS. Anal. Chem.74(19), 4994–5000 (2002).
  • Hunter TC, Yang L, Zhu H et al. Peptide mass mapping constrained with stable isotope-tagged peptides for identification of protein mixtures. Anal. Chem.73(20), 4891–4902 (2001).
  • Andersen JS, Mann M. Organellar proteomics: turning inventories into insights. EMBO J.7(9), 874–879 (2006).
  • Sickmann A, Reinders J, Wagner Y et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA100(23), 13207–13212 (2003).
  • Prokisch H, Scharfe C, Camp DG et al. Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol.2(6), e160 (2004).
  • Westermann B, Neupert W. ‘Omics’ of the mitochondrion. Nat. Biotechnol.21(3), 239–240 (2003).
  • Kumar A, Agarwal S, Heyman JA et al. Subcellular localization of the yeast proteome. Genes Dev.16(6), 707–719 (2002).
  • Huh W-K, Falvo JV, Gerke LC et al. Global analysis of protein localization in budding yeast. Nature425(6959), 686–691 (2003).
  • Ross-Macdonald P, Coelho PSR, Roemer T et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature402(6760), 413–418 (1999).
  • Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J. Biol. Chem.279(6), 3956–3979 (2004).
  • Drawid A, Gerstein MA. Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome. J. Mol. Biol.301(4), 1059–1075 (2000).
  • Stasyk T, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics4(12), 3704–3716 (2004).
  • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res.5(7), 1543–1554 (2006).
  • Murthi A, Hopper AK. Genome-wide screen for inner nuclear membrane protein targeting in Saccharomyces cerevisiae. Genetics170(4), 1553–1560 (2005).
  • Navarre C, Degand H, Bennett KL, Crawford JS, Boutry EMM. Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics2(12), 1706–1714 (2002).
  • Delom F, Szponarski W, Sommerer N et al. The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics6(10), 3029–3039 (2006).
  • Mian FA, Kuenzi MT, Halvorson HO. Studies on mitochondrial membrane proteins in Saccharomyces cerevisiae under different degrees of glucose repression. J. Bacteriol.115(3), 976–881 (1973).
  • Segal SP, Dunckley T, Parker R. Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol. Cell. Biol.26(13), 5129–5130 (2006).
  • Yu X, Xu D, Cheng Q. Label-free detection methods for protein microarrays. Proteomics6(20), 5493–5503 (2006).
  • Old WM, Meyer-Arendt K, Aveline-Wolf L et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics4(10), 1487–1502 (2005).
  • Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE. Comprehensive label-free method for the relative quantification of proteins from biological samples. J. Proteome Res.4(4), 1442–1450 (2005).
  • Doerr A. Absolute proteomics. Nat. Met.4(3), 195–195 (2007).
  • Jiang H, English AM. Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J. Proteome Res.1(4), 345–350 (2002).
  • Parker KC, Patterson D, Williamson B et al. Depth of proteome issues: a yeast isotope-coded affinity tag reagent study. Mol. Cell. Proteomics3(7), 625–659 (2004).
  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem.74(7), 1650–1657 (2002).
  • Zybailov BL, Florens L, Washburn MP. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst.3, 354–360 (2007).
  • Boucherie H. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J. Bacteriol.161(1), 385–392 (1985).
  • Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem.272(9), 5544–5554 (1997).
  • Zhou H, Ranish JA, Watts JD, Aebersold R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol.20(5), 512–515 (2002).
  • Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol. Cell. Proteomics2(11), 1198–1204 (2003).
  • Husnika JI, Volschenkb H, Bauerc J et al. Metabolic engineering of malolactic wine yeast. Metab. Eng.8(4), 315–323 (2006).
  • Ghaemmaghami S, Huh W-K, Bower K et al. Global analysis of protein expression in yeast. Nature425(6959), 737–741 (2003).
  • Köcher T, Superti-Furga G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Met.4(10), 807–815 (2007).
  • Nissen TL, Kielland-Brandta MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng.2(1), 69–77 (2002).
  • Overkamp KM, Bakker BM, Kotter P et al. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol.68(6), 2814–2821 (2002).
  • Bertone P, Snyder M. Prospects and challenges in proteomics. Plant Physiol.138(2), 560–562 (2005).
  • Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. Science274(5287), 546–567 (1996).
  • Ito T, Ota K, Kubota H et al. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol. Cell. Proteomics1(8), 561–566 (2002).
  • Fields S, Song O-K. A novel genetic system to detect protein–protein interactions. Nature340(6230), 245–246 (1989).
  • Schwikowski B, Uetz P, Fields S. A network of protein–protein interactions in yeast. Nat. Biotechnol.18(12), 1257–1261 (2000).
  • Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415(6868), 180–183 (2002).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Ranish JA, Yi EC, Leslie DM et al. The study of macromolecular complexes by quantitative proteomics. Nat. Gen.33(3), 349–355 (2003).
  • Smolka MB, Albuquerque CP, Chen S-H et al. Dynamic changes in protein–protein interaction and protein phosphorylation probed with amine-reactive isotope tag. Mol. Cell. Proteomics4(9), 1358–1369 (2005).
  • Synowsky SA, van den Heuvel RHH, Mohammed S, Pim Pijnappel WWM, Heck AJR. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol. Cell. Proteomics5(9), 1581–1592 (2006).
  • Puig O, Caspary F, Rigaut G et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods24(3), 218–229 (2001).
  • von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature417(6887), 399–403 (2002).
  • Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature440(7084), 637–643 (2006).
  • Collins SR, Kemmeren P, Zhao X-C et al. Towards a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics6(3), 439–450 (2007).
  • Pu S, Vlasblom J, Emili A, Greenblatt J, Wodak SJ. Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics7(6), 944–960 (2007).
  • McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol.5(5), 591–602 (2001).
  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA96(12), 6591–6596 (1999).
  • Blagoev B, Ong S-E, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol.22(9), 1139–1145 (2004).
  • Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21(8), 921–926 (2003).
  • Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA103(35), 13004–13009 (2006).
  • Yates JR, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell. Biol.6(9), 702–714 (2005).
  • Gruhler A, Olsen JV, Mohammed S et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4(3), 310–327 (2005).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Pena-Castillo L, Hughes TR. Why are there still over 1000 uncharacterized yeast genes? Genetics176(1), 7–14 (2007).
  • Barrow MP, Burkitt WI, Derrick PJ. Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Analyst130, 18–28 (2005).
  • McLafferty FW, Horna DM, Breukera K et al. Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J. Am. Soc. Mass Spect.12(3), 245–249 (2001).
  • Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol.8(1), 33–41 (2003).
  • Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem.72(6), 1156–1162 (2000).
  • Olsen JV, de Godoy LMF, Li G et al. Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics4(12), 2010–2021 (2005).
  • Hu Q, Noll RJ, Li H et al. The orbitrap: a new mass spectrometer. J. Mass Spectrom.40(4), 430–443 (2005).
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA101(26), 9528–9533 (2004).
  • Swaney DL, McAlister GC, Wirtala M et al. Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem.79(2), 477–485 (2007).
  • Hall DA, Zhu H, Zhu X et al. Regulation of gene expression by a metabolic enzyme. Science306(5695), 482–484 (2004).
  • Gingras A-C, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol.8(8), 645–654 (2007).
  • Jessani N, Cravatt BF. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol.8(1), 54–59 (2004).
  • Adam GC, Sorensen EJ, Cravatt BF. Chemical strategies for functional proteomics. Mol. Cell. Proteomics1(10), 781–790 (2002).
  • Karas M, Bahr U. Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal. Chem.9, 321–325 (1990).
  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science246(4926), 64–71 (1989).
  • van Wijk KJ. Challenges and prospects of plant proteomics. Plant Physiol.126(2), 501–508 (2001).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312(5771), 212–217 (2006).
  • Hubbarda MJ, Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci.18(5), 172–177 (1993).
  • Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat. Met.4(10), 798–806 (2007).
  • Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal. Chem.73(3), 393–404 (2001).
  • Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am. J. Physiol. Lung Cell Mol. Physiol.287(1), L1–23 (2004).
  • Köcher T, Allmaier G, Wilm M. Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. J. Mass Spect.38(2), 131–137 (2003).
  • Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E. Mass spectrometry technologies for proteomics. Brief. Funct. Genomic. Proteomic.4(4), 295–320 (2006).
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA104(14), 5860–5865 (2007).
  • Unwin RD, Griffiths JR, Leverentz MK et al. Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol. Cell. Proteomics4(8), 1134–1144 (2005).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics5(4), 573–588 (2006).
  • Unwin RD, Evans CA, Whetton AD. Relative quantification in proteomics: new approaches for biochemistry. Trends Biochem. Sci.31(8), 473–484 (2006).

Websites

  • Scirus www.scirus.com
  • Martin-Maroto F, Hao Z, Biringger R, Vazquez J, Huhmer AFR. Automatic de novo sequencing of peptides by electron transfer dissociation (Poster) www.thermo.com/eThermo/CMA/PDFs/Various/File_29474.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.